Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MMWR Morb Mortal Wkly Rep ; 69(1): 14-19, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31917783

RESUMO

On August 1, 2018, the Democratic Republic of the Congo (DRC) declared its 10th Ebola virus disease (Ebola) outbreak in an area with a high volume of cross-border population movement to and from neighboring countries. The World Health Organization (WHO) designated Rwanda, South Sudan, and Uganda as the highest priority countries for Ebola preparedness because of the high risk for cross-border spread from DRC (1). Countries might base their disease case definitions on global standards; however, historical context and perceived risk often affect why countries modify and adapt definitions over time, moving toward or away from regional harmonization. Discordance in case definitions among countries might reduce the effectiveness of cross-border initiatives during outbreaks with high risk for regional spread. CDC worked with the ministries of health (MOHs) in DRC, Rwanda, South Sudan, and Uganda to collect MOH-approved Ebola case definitions used during the first 6 months of the outbreak to assess concordance (i.e., commonality in category case definitions) among countries. Changes in MOH-approved Ebola case definitions were analyzed, referencing the WHO standard case definition, and concordance among the four countries for Ebola case categories (i.e., community alert, suspected, probable, confirmed, and case contact) was assessed at three dates (2). The number of country-level revisions ranged from two to four, with all countries revising Ebola definitions by February 2019 after a December 2018 peak in incidence in DRC. Case definition complexity increased over time; all countries included more criteria per category than the WHO standard definition did, except for the "case contact" and "confirmed" categories. Low case definition concordance and lack of awareness of regional differences by national-level health officials could reduce effectiveness of cross-border communication and collaboration. Working toward regional harmonization or considering systematic approaches to addressing country-level differences might increase efficiency in cross-border information sharing.


Assuntos
Surtos de Doenças , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Vigilância em Saúde Pública/métodos , República Democrática do Congo/epidemiologia , Humanos , Ruanda/epidemiologia , Sudão do Sul/epidemiologia , Fatores de Tempo , Uganda/epidemiologia
2.
Sci Rep ; 10(1): 1062, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974465

RESUMO

Rabies is a fatal viral disease typically transmitted through the bite of rabid animal. Domestic dogs cause over 99% of human rabies deaths. Over half of the world's population lives in a country where the canine rabies virus variant is endemic and dog bites are common. An estimated 29 million people worldwide receive post-bite vaccination after being exposed to animals suspected of rabies. Accurate and timely risk assessment of rabies in biting dogs is critical to ensure that rabies PEP is administered to all persons with a suspected rabies exposure, while avoiding PEP administration in situations where rabies can be definitively ruled out. In this study, a logistic regression model was developed to quantify the risk of rabies in biting dogs, using data from Haiti's animal rabies surveillance program. Significant risk factors identified in the model were used to quantify the probability of rabies in biting dogs. The risk of rabies in a biting dog as assessed through Haiti's rabies surveillance program was highly elevated when the dog displayed hypersalivation (OR = 34.6, 95% CI 11.3-106.5) or paralysis (OR = 19.0, 95% CI 4.8-74.8) and when the dog was dead at the time of the assessment (OR = 20.7, 95% CI 6.7-63.7). Lack of prior rabies vaccination, biting 2 or more people, and if the dog was a puppy also increased the probability that a biting dog would have rabies. The model showed high sensitivity (100%) and specificity (97%) when examined using validation data. This model enables us to project the risk of rabies in biting dogs in Haiti shortly after the bite event and make provisional PEP recommendations prior to laboratory testing or dog quarantine results. Application of this model may improve adherence to PEP for bite victims who can be educated on the quantitative risk of the exposure event. This model can also be used to reduce unnecessary PEP costs when the risk of rabies is determined as sufficiently low and the animal is available for observation.

3.
Trop Med Infect Dis ; 2(2)2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30270873

RESUMO

BACKGROUND: In canine rabies endemic countries the World Health Organization recommends post-exposure prophylaxis (PEP) be initiated immediately after exposure to an animal suspected to have rabies. Limited capacity in low and middle income countries to assess biting animals for rabies may result in the over prescription of rabies biologics. Few guidelines exist to determine the risk of whether a dog that has bitten someone is rabid. Given PEP cost and access limitations in many countries, accurate and timely assessment of dogs that have bitten people may reduce unwarranted PEP use and improve healthcare seeking behaviors. METHODS: Haiti's animal rabies surveillance program utilizes veterinary professionals to conduct rabies assessments on reported biting dogs and records characteristics of the dog, health outcomes, and laboratory results in a national database. Characteristics of rabid dogs were assessed through a retrospective cohort study of biting dogs investigated during the period from January 2013⁻December 2015. 1409 biting dogs were analyzed; 1361 dogs that were determined to not have rabies were compared to 48 laboratory-confirmed rabid dogs. Rate ratios, sensitivity, specificity, positive predictive values, negative predictive values, likelihood ratios, quarantine survival of biting dogs, and a risk matrix were developed. FINDINGS: The assessor's determination that the animal likely had rabies was the most significant predictive factor for a rabid dog (RR = 413.4, 95% CI 57.33⁻2985, Sn = 79.17, Sp = 91.92). Clinical factors significantly associated with rabid dogs included hypersalivation, paralysis, and lethargy (RR = 31.2, 19.7, 15.4, respectively). Rabid dogs were 23.2 times more likely to be found dead at the time of the investigation compared to case negative dogs (95% CI 14.0⁻38.6). Rabid dogs were also significantly more likely to lack a history of rabies vaccination or be unowned (RR = 10.3 95% CI 2.5⁻42.3 and RR = 4.5 95% CI 2.0⁻10.1, respectively). Rabid dogs were four times more likely to have bitten multiple people (RR = 4.0 95% CI 1.9⁻8.3). Most rabid dogs died or were killed before quarantine (75%) and all died by day 3 of quarantine, compared to <1% of quarantined case-negatives. The greatest risk of death was predicted to be for persons bitten on the head or neck from symptomatic dogs. Bites from dogs deemed healthy by veterinary assessors and which were available for quarantine presented less than a 0.05% risk of rabies death to the victim. CONCLUSIONS: Vaccination of all persons exposed to a suspected rabid dog is a highly effective approach to minimize human rabies deaths. However, this may place undue financial burden on bite victims that have had a low-risk exposure and over-prescription may contribute to regional supply shortages. The results here indicate that in a low-resource country such as Haiti, a well-trained veterinary assessor can provide an accurate risk assessment of biting dogs based on a standard case investigation protocol. In canine rabies endemic countries with limited access to PEP, or where PEP costs may cause undue burden on bite victims, structured risk assessments by trained professionals may be a reliable method of triaging PEP for bite victims. Evaluating rabies risk through a matrix of bite location and risk factor in the dog presents a clear delineation of high and low risk encounters and should be used to develop data-derived PEP recommendations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA