Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(9): eaax2066, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31517052

RESUMO

Neonatal heart failure is a rare, poorly-understood presentation of familial dilated cardiomyopathy (DCM). Exome sequencing in a neonate with severe DCM revealed a homozygous nonsense variant in leiomodin 2 (LMOD2, p.Trp398*). Leiomodins (Lmods) are actin-binding proteins that regulate actin filament assembly. While disease-causing mutations in smooth (LMOD1) and skeletal (LMOD3) muscle isoforms have been described, the cardiac (LMOD2) isoform has not been previously associated with human disease. Like our patient, Lmod2-null mice have severe early-onset DCM and die before weaning. The infant's explanted heart showed extraordinarily short thin filaments with isolated cardiomyocytes displaying a large reduction in maximum calcium-activated force production. The lack of extracardiac symptoms in Lmod2-null mice, and remarkable morphological and functional similarities between the patient and mouse model informed the decision to pursue cardiac transplantation in the patient. To our knowledge, this is the first report of aberrant cardiac thin filament assembly associated with human cardiomyopathy.

2.
Ann Clin Transl Neurol ; 6(10): 1980-1988, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31509352

RESUMO

OBJECTIVE: To characterize the natural history and clinical features of myopathies caused by mono-allelic, dominantly acting pathogenic variants in COL12A1. METHODS: Patients with dominant COL12A1-related myopathies were characterized by history and clinical examination, muscle imaging, and genetic analysis. Pathogenicity of the variants was assessed by immunostaining patient-derived dermal fibroblast cultures for collagen XII. RESULTS: Four independent families with childhood-onset weakness due to novel, dominantly acting pathogenic variants in COL12A1 were identified. Adult patients exhibited distal-predominant weakness. Three families carried dominantly acting glycine missense variants, and one family had a heterozygous, intragenic, in-frame deletion of exon 52 of COL12A1. All pathogenic variants resulted in increased intracellular retention of collagen XII in patient-derived fibroblasts as well as loss of extracellular, fibrillar collagen XII deposition. Since haploinsufficiency for COL12A1 is largely clinically asymptomatic, we designed and evaluated small interfering RNAs (siRNAs) that specifically target the mutant allele containing the exon 52 deletion. Immunostaining of the patient fibroblasts treated with the siRNA showed a near complete correction of collagen XII staining patterns. INTERPRETATION: This study characterizes a distal myopathy phenotype in adults with dominant COL12A1 pathogenic variants, further defining the phenotypic spectrum and natural history of COL12A1-related myopathies. This work also provides proof of concept of a precision medicine treatment approach by proposing and validating allele-specific knockdown using siRNAs specifically designed to target a patient's dominant COL12A1 disease allele.

3.
Genet Med ; 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31527676

RESUMO

PURPOSE: Pediatric cardiomyopathy is rare, has a broad differential diagnosis, results in high morbidity and mortality, and has suboptimal diagnostic yield using next-generation sequencing panels. Exome sequencing has reported diagnostic yields ranging from 30% to 57% for neonates in intensive care units. We aimed to characterize the clinical utility of exome sequencing in infantile heart failure. METHODS: Infants diagnosed with acute heart failure prior to 1 year old over a period of 34 months at a large tertiary children's hospital were recruited. Demographic and diagnostic information was obtained from medical records. Fifteen eligible patients were enrolled. RESULTS: Dilated cardiomyopathy was the predominant cardiac diagnosis, seen in 60% of patients. A molecular diagnosis was identified in 66.7% of patients (10/15). Of those diagnoses, 70% would not have been detected using multigene next-generation sequencing panels focused on cardiomyopathy or arrhythmia disease genes. Genetic testing changed medical decision-making in 53% of all cases and 80% of positive cases, and was especially beneficial when testing was expedited. CONCLUSION: Given the broad differential diagnosis and critical status of infants with heart failure, rapid exome sequencing provides timely diagnoses, changes medical management, and should be the first-tier molecular test.

4.
Genet Med ; 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31388190

RESUMO

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants in CHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.

5.
Am J Med Genet A ; 179(7): 1126-1138, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31058441

RESUMO

CHOPS syndrome is a multisystem disorder caused by missense mutations in AFF4. Previously, we reported three individuals whose primary phenotype included cognitive impairment and coarse facies, heart defects, obesity, pulmonary involvement, and short stature. This syndrome overlaps phenotypically with Cornelia de Lange syndrome, but presents distinct differences including facial features, pulmonary involvement, and obesity. Here, we provide clinical descriptions of an additional eight individuals with CHOPS syndrome, as well as neurocognitive analysis of three individuals. All 11 individuals presented with features reminiscent of Cornelia de Lange syndrome such as synophrys, upturned nasal tip, arched eyebrows, and long eyelashes. All 11 individuals had short stature and obesity. Congenital heart disease and pulmonary involvement were common, and those were seen in about 70% of individuals with CHOPS syndrome. Skeletal abnormalities are also common, and those include abnormal shape of vertebral bodies, hypoplastic long bones, and low bone mineral density. Our observation indicates that obesity, pulmonary involvement, skeletal findings are the most notable features distinguishing CHOPS syndrome from Cornelia de Lange syndrome. In fact, two out of eight of our newly identified patients were found to have AFF4 mutations by targeted AFF4 mutational analysis rather than exome sequencing. These phenotypic findings establish CHOPS syndrome as a distinct, clinically recognizable disorder. Additionally, we report three novel missense mutations causative for CHOPS syndrome that lie within the highly conserved, 14 amino acid sequence of the ALF homology domain of the AFF4 gene, emphasizing the critical functional role of this region in human development.

6.
Acta Neuropathol ; 137(3): 501-519, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30701273

RESUMO

The identification of genes implicated in myopathies is essential for diagnosis and for revealing novel therapeutic targets. Here we characterize a novel subclass of congenital myopathy at the morphological, molecular, and functional level. Through exome sequencing, we identified de novo ACTN2 mutations, a missense and a deletion, in two unrelated patients presenting with progressive early-onset muscle weakness and respiratory involvement. Morphological and ultrastructural analyses of muscle biopsies revealed a distinctive pattern with the presence of muscle fibers containing small structured cores and jagged Z-lines. Deeper analysis of the missense mutation revealed mutant alpha-actinin-2 properly localized to the Z-line in differentiating myotubes and its level was not altered in muscle biopsy. Modelling of the disease in zebrafish and mice by exogenous expression of mutated alpha-actinin-2 recapitulated the abnormal muscle function and structure seen in the patients. Motor deficits were noted in zebrafish, and muscle force was impaired in isolated muscles from AAV-transduced mice. In both models, sarcomeric disorganization was evident, while expression of wild-type alpha-actinin-2 did not result in muscle anomalies. The murine muscles injected with mutant ACTN2 displayed cores and Z-line defects. Dominant ACTN2 mutations were previously associated with cardiomyopathies, and our data demonstrate that specific mutations in the well-known Z-line regulator alpha-actinin-2 can cause a skeletal muscle disorder.

7.
Am J Med Genet A ; 179(4): 542-551, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30719864

RESUMO

Sotos syndrome is an overgrowth syndrome characterized by distinctive facial features and intellectual disability caused by haploinsufficiency of the NSD1 gene. Genotype-phenotype correlations have been observed, with major anomalies seen more frequently in patients with 5q35 deletions than those with point mutations in NSD1. Though endocrine features have rarely been described, transient hyperinsulinemic hypoglycemia (HI) of the neonatal period has been reported as an uncommon presentation of Sotos syndrome. Eight cases of 5q35 deletions and one patient with an intragenic NSD1 mutation with transient HI have been reported. Here, we describe seven individuals with HI caused by NSD1 gene mutations with three having persistent hyperinsulinemic hypoglycemia. These patients with persistent HI and Sotos syndrome caused by NSD1 mutations, further dispel the hypothesis that HI is due to the deletion of other genes in the deleted 5q35 region. These patients emphasize that NSD1 haploinsufficiency is sufficient to cause HI, and suggest that Sotos syndrome should be considered in patients presenting with neonatal HI. Lastly, these patients help extend the phenotypic spectrum of Sotos syndrome to include HI as a significant feature.

8.
J Mol Diagn ; 21(1): 38-48, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30577886

RESUMO

Clinical exome sequencing (CES) has a reported diagnostic yield of 20% to 30% for most clinical indications. The ongoing discovery of novel gene-disease and variant-disease associations are expected to increase the diagnostic yield of CES. Performing systematic reanalysis of previously nondiagnostic CES samples represents a significant challenge for clinical laboratories. Here, we present the results of a novel automated reanalysis methodology applied to 300 CES samples initially analyzed between June 2014 and September 2016. Application of our reanalysis methodology reduced reanalysis variant analysis burden by >93% and correctly captured 70 of 70 previously identified diagnostic variants among 60 samples with previously identified diagnoses. Notably, reanalysis of 240 initially nondiagnostic samples using information available on July 1, 2017, revealed 38 novel diagnoses, representing a 15.8% increase in diagnostic yield. Modeling monthly iterative reanalysis of 240 nondiagnostic samples revealed a diagnostic rate of 0.57% of samples per month. Modeling the workload required for monthly iterative reanalysis of nondiagnostic samples revealed a variant analysis burden of approximately 5 variants/month for proband-only and approximately 0.5 variants/month for trio samples. Approximately 45% of samples required evaluation during each monthly interval, and 61.3% of samples were reevaluated across three consecutive reanalyses. In sum, automated reanalysis methods can facilitate efficient reevaluation of nondiagnostic samples using up-to-date literature and can provide significant value to clinical laboratories.

10.
Hum Mutat ; 39(12): 1980-1994, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30168660

RESUMO

SH3 and cysteine-rich domain-containing protein 3 (STAC3) is an essential component of the skeletal muscle excitation-contraction coupling (ECC) machinery, though its role and function are not yet completely understood. Here, we report 18 patients carrying a homozygous p.(Trp284Ser) STAC3 variant in addition to a patient compound heterozygous for the p.(Trp284Ser) and a novel splice site change (c.997-1G > T). Clinical severity ranged from prenatal onset with severe features at birth, to a milder and slowly progressive congenital myopathy phenotype. A malignant hyperthermia (MH)-like reaction had occurred in several patients. The functional analysis demonstrated impaired ECC. In particular, KCl-induced membrane depolarization resulted in significantly reduced sarcoplasmic reticulum Ca2+ release. Co-immunoprecipitation of STAC3 with CaV 1.1 in patients and control muscle samples showed that the protein interaction between STAC3 and CaV 1.1 was not significantly affected by the STAC3 variants. This study demonstrates that STAC3 gene analysis should be included in the diagnostic work up of patients of any ethnicity presenting with congenital myopathy, in particular if a history of MH-like episodes is reported. While the precise pathomechanism remains to be elucidated, our functional characterization of STAC3 variants revealed that defective ECC is not a result of CaV 1.1 sarcolemma mislocalization or impaired STAC3-CaV 1.1 interaction.

11.
Neuron ; 99(5): 905-913.e7, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30146301

RESUMO

Channelopathies are disorders caused by abnormal ion channel function in differentiated excitable tissues. We discovered a unique neurodevelopmental channelopathy resulting from pathogenic variants in SCN3A, a gene encoding the voltage-gated sodium channel NaV1.3. Pathogenic NaV1.3 channels showed altered biophysical properties including increased persistent current. Remarkably, affected individuals showed disrupted folding (polymicrogyria) of the perisylvian cortex of the brain but did not typically exhibit epilepsy; they presented with prominent speech and oral motor dysfunction, implicating SCN3A in prenatal development of human cortical language areas. The development of this disorder parallels SCN3A expression, which we observed to be highest early in fetal cortical development in progenitor cells of the outer subventricular zone and cortical plate neurons and decreased postnatally, when SCN1A (NaV1.1) expression increased. Disrupted cerebral cortical folding and neuronal migration were recapitulated in ferrets expressing the mutant channel, underscoring the unexpected role of SCN3A in progenitor cells and migrating neurons.

12.
Am J Med Genet A ; 176(9): 1890-1896, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30152016

RESUMO

Xia-Gibbs syndrome (XGS) is a recently described neurodevelopmental disorder due to heterozygous loss-of-function AHDC1 mutations. XGS is characterized by global developmental delay, intellectual disability, hypotonia, and sleep abnormalities. Here we report the clinical phenotype of five of six individuals with XGS identified prospectively at the Children's Hospital of Philadelphia, a tertiary children's hospital in the USA. Although all five patients demonstrated common clinical features characterized by developmental delay and characteristic facial features, each of our patients showed unique clinical manifestations. Patient one had craniosynostosis; patient two had sensorineural hearing loss and bicuspid aortic valve; patient three had cutis aplasia; patient four had soft, loose skin; and patient five had a lipoma. Differential diagnoses considered for each patient were quite broad, and included craniosynostosis syndromes, connective tissue disorders, and mitochondrial disorders. Exome sequencing identified a heterozygous, de novo AHDC1 loss-of-function mutation in four of five patients; the remaining patient has a 357kb interstitial deletion of 1p36.11p35.3 including AHDC1. Although it remains unknown whether these unique clinical manifestations are rare symptoms of XGS, our findings indicate that the diagnosis of XGS should be considered even in individuals with additional non-neurological symptoms, as the clinical spectrum of XGS may involve such non-neurological manifestations. Adding to the growing literature on XGS, continued cohort studies are warranted in order to both characterize the clinical spectrum of XGS as well as determine standard of care for patients with this diagnosis.

13.
Genet Med ; 20(3): 329-336, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29389922

RESUMO

PurposeThe objective of this study was to assess the ability of our laboratory's exome-sequencing test to detect known and novel sequence variants and identify the critical factors influencing the interpretation of a clinical exome test.MethodsWe developed a two-tiered validation strategy: (i) a method-based approach that assessed the ability of our exome test to detect known variants using a reference HapMap sample, and (ii) an interpretation-based approach that assessed our relative ability to identify and interpret disease-causing variants, by analyzing and comparing the results of 19 randomly selected patients previously tested by external laboratories.ResultsWe demonstrate that this approach is reproducible with >99% analytical sensitivity and specificity for single-nucleotide variants and indels <10 bp. Our findings were concordant with the reference laboratories in 84% of cases. A new molecular diagnosis was applied to three cases, including discovery of two novel candidate genes.ConclusionWe provide an assessment of critical areas that influence interpretation of an exome test, including comprehensive phenotype capture, assessment of clinical overlap, availability of parental data, and the addressing of limitations in database updates. These results can be used to inform improvements in phenotype-driven interpretation of medical exomes in clinical and research settings.


Assuntos
Confiabilidade dos Dados , Exoma , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Biologia Computacional/métodos , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Testes Genéticos/normas , Genômica/métodos , Genômica/normas , Humanos , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Am J Occup Ther ; 72(2): 7202345010p1-7202345010p5, 2018 Mar/Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29426391

RESUMO

Patients with Duchenne muscular dystrophy in their second decade of life present with decreased upper extremity strength and active range of motion (AROM) that limit activities of daily living (ADLs). We evaluated the ability of the Wilmington Robotic Exoskeleton (WREX) to improve AROM and independence with ADLs. A retrospective chart review of 9 patients who trialed the WREX was performed. Patients were classified on the basis of the Brooke Upper Extremity Scale. AROM, strength, and independence with ADLs were assessed before and after a WREX trial. Patients demonstrated increased shoulder flexion and abduction (25°-100°, median = 55°) and elbow flexion (10°-110°, median = 60°). Increased independence with self-feeding, item retrieval, use of phones and tablets, and facial grooming were noted. The WREX allowed for gravity-reduced movement via elastic bands to unweight the upper extremity, enabling increased upper extremity active movement that supported increased independence with ADLs.

16.
Ann Neurol ; 83(4): 703-717, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29466837

RESUMO

OBJECTIVE: Voltage-gated sodium (Na+ ) channels underlie action potential generation and propagation and hence are central to the regulation of excitability in the nervous system. Mutations in the genes SCN1A, SCN2A, and SCN8A, encoding the Na+ channel pore-forming (α) subunits Nav1.1, 1.2, and 1.6, respectively, and SCN1B, encoding the accessory subunit ß1 , are established causes of genetic epilepsies. SCN3A, encoding Nav1.3, is known to be highly expressed in brain, but has not previously been linked to early infantile epileptic encephalopathy. Here, we describe a cohort of 4 patients with epileptic encephalopathy and heterozygous de novo missense variants in SCN3A (p.Ile875Thr in 2 cases, p.Pro1333Leu, and p.Val1769Ala). METHODS: All patients presented with treatment-resistant epilepsy in the first year of life, severe to profound intellectual disability, and in 2 cases (both with the variant p.Ile875Thr), diffuse polymicrogyria. RESULTS: Electrophysiological recordings of mutant channels revealed prominent gain of channel function, with a markedly increased amplitude of the slowly inactivating current component, and for 2 of 3 mutants (p.Ile875Thr and p.Pro1333Leu), a leftward shift in the voltage dependence of activation to more hyperpolarized potentials. Gain of function was not observed for Nav1.3 variants known or presumed to be inherited (p.Arg1642Cys and p.Lys1799Gln). The antiseizure medications phenytoin and lacosamide selectively blocked slowly inactivating over transient current in wild-type and mutant Nav1.3 channels. INTERPRETATION: These findings establish SCN3A as a new gene for infantile epileptic encephalopathy and suggest a potential pharmacologic intervention. These findings also reinforce the role of Nav1.3 as an important regulator of neuronal excitability in the developing brain, while providing additional insight into mechanisms of slow inactivation of Nav1.3. Ann Neurol 2018;83:703-717.

17.
J Med Genet ; 55(8): 561-566, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28866611

RESUMO

BACKGROUND: The list of Mendelian disorders of the epigenetic machinery has expanded rapidly during the last 5 years. A few missense variants in the chromatin remodeler CHD1 have been found in several large-scale sequencing efforts focused on uncovering the genetic aetiology of autism. OBJECTIVES: To explore whether variants in CHD1 are associated with a human phenotype. METHODS: We used GeneMatcher to identify other physicians caring for patients with variants in CHD1. We also explored the epigenetic consequences of one of these variants in cultured fibroblasts. RESULTS: Here we describe six CHD1 heterozygous missense variants in a cohort of patients with autism, speech apraxia, developmental delay and facial dysmorphic features. Importantly, three of these variants occurred de novo. We also report on a subject with a de novo deletion covering a large fraction of the CHD1 gene without any obvious neurological phenotype. Finally, we demonstrate increased levels of the closed chromatin modification H3K27me3 in fibroblasts from a subject carrying a de novo variant in CHD1. CONCLUSIONS: Our results suggest that variants in CHD1 can lead to diverse phenotypic outcomes; however, the neurodevelopmental phenotype appears to be limited to patients with missense variants, which is compatible with a dominant negative mechanism of disease.

18.
Neuromuscul Disord ; 27(11): 975-985, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28818389

RESUMO

Mutations in RYR1 give rise to diverse skeletal muscle phenotypes, ranging from classical central core disease to susceptibility to malignant hyperthermia. Next-generation sequencing has recently shown that RYR1 is implicated in a wide variety of additional myopathies, including centronuclear myopathy. In this work, we established an international cohort of 21 patients from 18 families with autosomal recessive RYR1-related centronuclear myopathy, to better define the clinical, imaging, and histological spectrum of this disorder. Early onset of symptoms with hypotonia, motor developmental delay, proximal muscle weakness, and a stable course were common clinical features in the cohort. Ptosis and/or ophthalmoparesis, facial weakness, thoracic deformities, and spinal involvement were also frequent but variable. A common imaging pattern consisted of selective involvement of the vastus lateralis, adductor magnus, and biceps brachii in comparison to adjacent muscles. In addition to a variable prominence of central nuclei, muscle biopsy from 20 patients showed type 1 fiber predominance and a wide range of intermyofibrillary architecture abnormalities. All families harbored compound heterozygous mutations, most commonly a truncating mutation combined with a missense mutation. This work expands the phenotypic characterization of patients with recessive RYR1-related centronuclear myopathy by highlighting common and variable clinical, histological, and imaging findings in these patients.


Assuntos
Miopatias Congênitas Estruturais/diagnóstico por imagem , Miopatias Congênitas Estruturais/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/fisiopatologia , Fenótipo
19.
Pediatr Dermatol ; 34(5): e227-e230, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28730721

RESUMO

Capillary malformation-arteriovenous malformation (CM-AVM) syndrome, due to inactivating mutations in RASA1 in 68% of cases, is characterized by the development of cutaneous capillary malformations and arteriovenous malformations or fistulas; no known genetic etiology has been identified in patients with CM-AVM syndrome without RASA1 mutations. We present the case of a child with RASA1-negative CM-AVM syndrome with a de novo missense mutation in EPHB4, a transmembrane tyrosine kinase receptor essential for vasculogenesis. Inactivating the mutation in EPHB4 has been shown to upregulate the mitogen-activated protein kinase pathway and the mammalian target of rapamycin complex 1, possibly contributing to the development of vascular malformations.


Assuntos
Malformações Arteriovenosas/genética , Capilares/anormalidades , Mancha Vinho do Porto/genética , Receptor EphB4/genética , Criança , Humanos , Masculino , Mutação de Sentido Incorreto , Proteína p120 Ativadora de GTPase/genética
20.
J Neurogenet ; 31(1-2): 30-36, 2017 Mar - Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28460589

RESUMO

Pathogenic missense and truncating variants in the GABRG2 gene cause a spectrum of epilepsies, from Dravet syndrome to milder simple febrile seizures. In most cases, pathogenic missense variants in the GABRG2 gene segregate with a febrile seizure phenotype. In this case series, we report a recurrent, de novo missense variant (c0.316 G > A; p.A106T) in the GABRG2 gene that was identified in five unrelated individuals. These patients were described to have a more severe phenotype than previously reported for GABRG2 missense variants. Common features include variable early-onset seizures, significant motor and speech delays, intellectual disability, hypotonia, movement disorder, dysmorphic features and vision/ocular issues. Our report further explores a recurrent pathogenic missense variant within the GABRG2 variant family and broadens the spectrum of associated phenotypes for GABRG2-associated disorders.


Assuntos
Anormalidades Múltiplas/patologia , Mutação de Sentido Incorreto , Receptores de GABA-A/genética , Índice de Gravidade de Doença , Anormalidades Múltiplas/genética , Adolescente , Criança , Epilepsia/genética , Epilepsia/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Transtornos Motores/genética , Transtornos Motores/patologia , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Linhagem , Fenótipo , Distúrbios da Fala/genética , Distúrbios da Fala/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA