Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Curr ; : 1535759719871593, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31476917

RESUMO

Diagnostic Exome Sequencing in 100 Consecutive Patients With Both Epilepsy and Intellectual Disability Snoeijen-Schouwenaars FM, van Ool JS, Verhoeven JS, et al. Epilepsia. 2019;60(1):155-164. doi:10.1111/epi.14618. Epub December 7, 2018. PMID: 30525188 . OBJECTIVE: Epilepsy is highly prevalent among patients with intellectual disability (ID), and seizure control is often difficult. Identification of the underlying etiology in this patient group is important for daily clinical care. We assessed the diagnostic yield of whole-exome sequencing (WES). In addition, we evaluated which clinical characteristics influence the likelihood of identifying a genetic cause and we assessed the potential impact of the genetic diagnosis on (antiepileptic) treatment strategy. METHODS: One hundred patients with both unexplained epilepsy and (borderline) ID (intelligence quotient ≤85) were included. All patients were evaluated by a clinical geneticist, a (pediatric) neurologist, and/or a specialist ID physician. Whole-exome sequencing analysis was performed in 2 steps. In step 1, analysis was restricted to the latest versions of ID and/or epilepsy gene panels. In step 2, exome analysis was extended to all genes (so-called full exome analysis). The results were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: In 58 patients, the diagnostic WES analysis reported one or more variant(s). In 25 of the 100 patients, these were classified as (likely) pathogenic, in 24 patients as variants of uncertain significance, and in the remaining patients the variant was most likely not related to the phenotype. In 10 (40%) of 25 patients with a (likely) pathogenic variant, the genetic diagnosis might have an impact on the treatment strategy in the future. SIGNIFICANCE: This study illustrates the clinical diagnostic relevance of WES for patients with both epilepsy and ID. It also demonstrates that implementing WES diagnostics might have impact on the (antiepileptic) treatment strategy in this population. Confirmation of variants of uncertain significance in (candidate) genes may further increase the yield. Diagnostic Yield of Genetic Tests in Epilepsy: A Meta-Analysis and Cost-Effectiveness Study Sánchez Fernández I, Loddenkemper T, Gaínza-Lein M, Sheidley BR, Poduri A. Neurology. 2019. Epub ahead of print. pii: 10.1212/WNL.0000000000006850. doi:10.1212/WNL.0000000000006850. PMID: 30610098 Objective: To compare the cost-effectiveness of genetic testing strategies in patients with epilepsy of unknown etiology. METHODS: This meta-analysis and cost-effectiveness study compared strategies involving 3 genetic tests: chromosomal microarray (CMA), epilepsy panel (EP) with deletion/duplication testing, and whole-exome sequencing (WES) in a cost-effectiveness model, using "no genetic testing"" as a point of comparison. RESULTS: Twenty studies provided information on the diagnostic yield of CMA (8 studies), EP (9 studies), and WES (6 studies). The diagnostic yield was highest for WES: 0.45 (95% confidence interval [CI]: 0.33-0.57; 0.32 [95% CI: 0.22-0.44] adjusting for potential publication bias), followed by EP: 0.23 (95% CI: 0.18-0.29) and CMA: 0.08 (95% CI: 0.06-0.12). The most cost-effective test was WES with an incremental cost-effectiveness ratio (ICER) of US$15 000/diagnosis. However, after adjusting for potential publication bias, the most cost-effective test was EP (ICER: US$15 848/diagnosis) followed by WES (ICER: US$34 500/diagnosis). Among combination strategies, the most cost-effective strategy was WES, then if nondiagnostic, EP, then if nondiagnostic, CMA (ICER: US$15 336/diagnosis); although adjusting for potential publication bias, the most cost-effective strategy was EP ± CMA ± WES (ICER: US$18 385/diagnosis). Although the cost-effectiveness of individual tests and testing strategies overlapped, CMA was consistently less cost-effective than WES and EP. CONCLUSION: Whole-exome sequencing and EP are the most cost-effective genetic tests for epilepsy. Our analyses support for a broad population of patients with unexplained epilepsy, starting with these tests. Although less expensive, CMA has lower yield, and its use as the first-tier test is thus not supported from a cost-effectiveness perspective.

2.
Biol Psychiatry ; 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31526516

RESUMO

BACKGROUND: Variants disruptive to CHD8 (which codes for the protein CHD8 [chromodomain-helicase-DNA-binding protein 8]) are among the most common mutations revealed by exome sequencing in autism spectrum disorder (ASD). Recent work has indicated that CHD8 plays a role in the regulation of other ASD-risk genes. However, it is unclear whether a possible shared genetic ontology extends to the phenotype. METHODS: This study (N = 143; 42.7% female participants) investigated clinical and behavioral features of individuals ascertained for the presence of a known disruptive ASD-risk mutation that is 1) CHD8 (CHD8 group) (n = 15), 2) a gene targeted by CHD8 (target group) (n = 22), or 3) a gene without confirmed evidence of being targeted by CHD8 (other gene group) (n = 106). RESULTS: Results indicated shared features between the CHD8 and target groups that included less severe adaptive deficits in communication skills, similar functional language, more social motivation challenges in those with ASD, larger head circumference, higher weight, and lower seizure prevalence relative to the other gene group. CONCLUSIONS: These similarities suggest broader genetic ontology accounts for aspects of phenotypic heterogeneity. Improved understanding of the relationships between related disruptive gene events may lead us to improved understanding of shared mechanisms and lead to more focused treatments for individuals with known genetic mutations.

3.
Hum Mutat ; 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31513310

RESUMO

Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.

4.
Epilepsy Res ; 156: 106181, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31394400

RESUMO

Infantile spasms (IS) is a developmental and epileptic encephalopathy with heterogeneous etiologies including many genetic causes. Genetic studies have identified pathogenic variants in over 30 genes as causes of IS. Many of these genetic causes are extremely rare, with only one reported incidence in an individual with IS. To better understand the genetic landscape of IS, we used targeted sequencing to screen 42 candidate IS genes and 53 established developmental and epileptic encephalopathy genes in 92 individual with IS. We identified a genetic diagnosis for 7.6% of our cohort, including pathogenic variants in KCNB1 (n = 2), GNAO1 (n = 1), STXBP1 (n = 1), SLC35A2 (n = 1), TBL1XR1 (n = 1), and KIF1A (n = 1). Our data emphasize the genetic heterogeneity of IS and will inform the diagnosis and management of individuals with this devastating disorder.

5.
Epilepsy Res ; 155: 106161, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31295639

RESUMO

Over the past decade there has been a substantial increase in genetic studies of brain malformations, fueled by the availability of improved technologies to study surgical tissue to address the hypothesis that focal lesions arise from focal, post-zygotic genetic disruptions. Traditional genetic studies of patients with malformations utilized leukocyte-derived DNA to search for germline variants, which are inherited or arise de novo in parental gametes. Recent studies have demonstrated somatic variants that arise post-zygotically also underlie brain malformations, and that somatic mutation explains a larger proportion of focal malformations than previously thought. We now know from studies of non-diseased individuals that somatic variation occurs routinely during cell division, including during early brain development when the rapid proliferation of neuronal precursor cells provides the ideal environment for somatic mutation to occur and somatic variants to accumulate. When confined to brain, pathogenic variants contribute to the "hidden genetics" of neurological diseases. With burgeoning novel high-throughput genetic technologies, somatic genetic variations are increasingly being recognized. Here we discuss accumulating evidence for the presence of somatic variants in normal brain tissue, review our current understanding of somatic variants in brain malformations associated with lesional epilepsy, and provide strategies to identify the potential contribution of somatic mutation to non-lesional epilepsies. We also discuss technologies that may improve detection of somatic variants in the future in these and other neurological conditions.

6.
Ann Neurol ; 86(2): 181-192, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31177578

RESUMO

OBJECTIVE: Recent reports have described single individuals with neurodevelopmental disability (NDD) harboring heterozygous KCNQ3 de novo variants (DNVs). We sought to assess whether pathogenic variants in KCNQ3 cause NDD and to elucidate the associated phenotype and molecular mechanisms. METHODS: Patients with NDD and KCNQ3 DNVs were identified through an international collaboration. Phenotypes were characterized by clinical assessment, review of charts, electroencephalographic (EEG) recordings, and parental interview. Functional consequences of variants were analyzed in vitro by patch-clamp recording. RESULTS: Eleven patients were assessed. They had recurrent heterozygous DNVs in KCNQ3 affecting residues R230 (R230C, R230H, R230S) and R227 (R227Q). All patients exhibited global developmental delay within the first 2 years of life. Most (8/11, 73%) were nonverbal or had a few words only. All patients had autistic features, and autism spectrum disorder (ASD) was diagnosed in 5 of 11 (45%). EEGs performed before 10 years of age revealed frequent sleep-activated multifocal epileptiform discharges in 8 of 11 (73%). For 6 of 9 (67%) recorded between 1.5 and 6 years of age, spikes became near-continuous during sleep. Interestingly, most patients (9/11, 82%) did not have seizures, and no patient had seizures in the neonatal period. Voltage-clamp recordings of the mutant KCNQ3 channels revealed gain-of-function (GoF) effects. INTERPRETATION: Specific GoF variants in KCNQ3 cause NDD, ASD, and abundant sleep-activated spikes. This new phenotype contrasts both with self-limited neonatal epilepsy due to KCNQ3 partial loss of function, and with the neonatal or infantile onset epileptic encephalopathies due to KCNQ2 GoF. ANN NEUROL 2019;86:181-192.

7.
Am J Hum Genet ; 104(5): 948-956, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982612

RESUMO

The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.

8.
Epileptic Disord ; 21(2): 185-191, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30977726

RESUMO

Epilepsy with auditory features (EAF) is a focal epilepsy syndrome characterized by prominent auditory ictal manifestations. Two main genes, LGI1 and RELN, have been implicated in EAF, but the genetic aetiology remains unknown in half of families and most sporadic cases. We previously described a pathogenic SCN1A missense variant (p.Thr956Met) segregating in a large family in which the proband and her affected daughter had EAF, thus satisfying the minimum requirement for diagnosis of autosomal dominant EAF (ADEAF). However, the remaining eight affected family members had clinical manifestations typically found in families with genetic epilepsy with febrile seizures plus (GEFS+). We aimed to investigate the role/impact of SCN1A mutations in EAF. We detailed the phenotype of this family and report on SCN1A screening in a cohort of 29 familial and 52 sporadic LGI1 variant-negative EAF patients. We identified two possibly pathogenic missense variants (p.Tyr790Phe and p.Thr140Ile) in sporadic patients (3.8%) showing typical EAF and no antecedent febrile seizures. Both p.Thr956Met and p.Tyr790Phe were previously described in unrelated patients with epilepsies within the GEFS+ spectrum. SCN1A mutations may be involved in EAF within the GEFS+ spectrum, however, the role of SCN1A in EAF without features that lead to a suspicion of underlying GEFS+ remains unclear and should be elucidated in future studies.


Assuntos
Transtornos da Percepção Auditiva , Epilepsias Parciais , Epilepsia Generalizada , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões Febris , Adulto , Idoso , Transtornos da Percepção Auditiva/etiologia , Transtornos da Percepção Auditiva/genética , Transtornos da Percepção Auditiva/fisiopatologia , Epilepsias Parciais/complicações , Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Epilepsia Generalizada/complicações , Epilepsia Generalizada/genética , Epilepsia Generalizada/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Convulsões Febris/complicações , Convulsões Febris/genética , Convulsões Febris/fisiopatologia
9.
Ann Clin Transl Neurol ; 6(3): 475-485, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30911571

RESUMO

Objective: We investigated the contribution to sporadic focal epilepsies (FE) of ultrarare variants in genes coding for the components of complexes regulating mechanistic Target Of Rapamycin (mTOR)complex 1 (mTORC1). Methods: We collected genetic data of 121 Italian isolated FE cases and 512 controls by Whole Exome Sequencing (WES) and single-molecule Molecular Inversion Probes (smMIPs) targeting 10 genes of the GATOR1, GATOR2, and TSC complexes. We collapsed "qualifying" variants (ultrarare and predicted to be deleterious or loss of function) across the examined genes and sought to identify their enrichment in cases compared to controls. Results: We found eight qualifying variants in cases and nine in controls, demonstrating enrichment in FE patients (P = 0.006; exact unconditional test, one-tailed). Pathogenic variants were identified in DEPDC5 and TSC2, both major genes for Mendelian FE syndromes. Interpretation: Our findings support the contribution of ultrarare variants in genes in the mTOR pathway complexes GATOR and TSC to the risk of sporadic FE and a shared genetic basis between rare and common epilepsies. The identification of a monogenic etiology in isolated cases, most typically encountered in clinical practice, may offer to a broader community of patients the perspective of precision therapies directed by the underlying genetic cause.

10.
Genet Med ; 21(9): 2059-2069, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30923367

RESUMO

PURPOSE: To investigate the effect of different DEAF1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and on DEAF1 activity in vitro. METHODS: We assembled a cohort of 23 patients with de novo and biallelic DEAF1 variants, described the genotype-phenotype correlation, and investigated the differential effect of de novo and recessive variants on transcription assays using DEAF1 and Eif4g3 promoter luciferase constructs. RESULTS: The proportion of the most prevalent phenotypic features, including intellectual disability, speech delay, motor delay, autism, sleep disturbances, and a high pain threshold, were not significantly different in patients with biallelic and pathogenic de novo DEAF1 variants. However, microcephaly was exclusively observed in patients with recessive variants (p < 0.0001). CONCLUSION: We propose that different variants in the DEAF1 gene result in a phenotypic spectrum centered around neurodevelopmental delay. While a pathogenic de novo dominant variant would also incapacitate the product of the wild-type allele and result in a dominant-negative effect, a combination of two recessive variants would result in a partial loss of function. Because the clinical picture can be nonspecific, detailed phenotype information, segregation, and functional analysis are fundamental to determine the pathogenicity of novel variants and to improve the care of these patients.

11.
Epilepsia ; 60(4): 689-706, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30866059

RESUMO

OBJECTIVE: Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available. METHODS: We assembled a cohort of 1255 patients with preexisting array comparative genomic hybridization or single nucleotide polymorphism array based CNV data. All patients had "epilepsy plus," defined as epilepsy with comorbid features, including intellectual disability, psychiatric symptoms, and other neurological and nonneurological features. CNV classification was conducted using a systematic filtering workflow adapted to epilepsy. RESULTS: Of 1097 patients remaining after genetic data quality control, 120 individuals (10.9%) carried at least one autosomal CNV classified as pathogenic; 19 individuals (1.7%) carried at least one autosomal CNV classified as possibly pathogenic. Eleven patients (1%) carried more than one (possibly) pathogenic CNV. We identified CNVs covering recently reported (HNRNPU) or emerging (RORB) epilepsy genes, and further delineated the phenotype associated with mutations of these genes. Additional novel epilepsy candidate genes emerge from our study. Comparing phenotypic features of pathogenic CNV carriers to those of noncarriers of pathogenic CNVs, we show that patients with nonneurological comorbidities, especially dysmorphism, were more likely to carry pathogenic CNVs (odds ratio = 4.09, confidence interval = 2.51-6.68; P = 2.34 × 10-9 ). Meta-analysis including data from published control groups showed that the presence or absence of epilepsy did not affect the detected frequency of CNVs. SIGNIFICANCE: The use of a specifically adapted workflow enabled identification of pathogenic autosomal CNVs in 10.9% of patients with epilepsy plus, which rose to 12.7% when we also considered possibly pathogenic CNVs. Our data indicate that epilepsy with comorbid features should be considered an indication for patients to be selected for a diagnostic algorithm including CNV detection. Collaborative large-scale CNV reanalysis leads to novel declaration of pathogenicity in unexplained cases and can promote discovery of promising candidate epilepsy genes.

12.
Am J Hum Genet ; 104(2): 213-228, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639323

RESUMO

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.

13.
Am J Hum Genet ; 104(1): 35-44, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554721

RESUMO

Baratela-Scott syndrome (BSS) is a rare, autosomal-recessive disorder characterized by short stature, facial dysmorphisms, developmental delay, and skeletal dysplasia caused by pathogenic variants in XYLT1. We report clinical and molecular investigation of 10 families (12 individuals) with BSS. Standard sequencing methods identified biallelic pathogenic variants in XYLT1 in only two families. Of the remaining cohort, two probands had no variants and six probands had only a single variant, including four with a heterozygous 3.1 Mb 16p13 deletion encompassing XYLT1 and two with a heterozygous truncating variant. Bisulfite sequencing revealed aberrant hypermethylation in exon 1 of XYLT1, always in trans with the sequence variant or deletion when present; both alleles were methylated in those with no identified variant. Expression of the methylated XYLT1 allele was severely reduced in fibroblasts from two probands. Southern blot studies combined with repeat expansion analysis of genome sequence data showed that the hypermethylation is associated with expansion of a GGC repeat in the XYLT1 promoter region that is not present in the reference genome, confirming that BSS is a trinucleotide repeat expansion disorder. The hypermethylated allele accounts for 50% of disease alleles in our cohort and is not present in 130 control subjects. Our study highlights the importance of investigating non-sequence-based alterations, including epigenetic changes, to identify the missing heritability in genetic disorders.

14.
Neurology ; 92(2): e96-e107, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30541864

RESUMO

OBJECTIVE: To delineate the epileptology, a key part of the SYNGAP1 phenotypic spectrum, in a large patient cohort. METHODS: Patients were recruited via investigators' practices or social media. We included patients with (likely) pathogenic SYNGAP1 variants or chromosome 6p21.32 microdeletions incorporating SYNGAP1. We analyzed patients' phenotypes using a standardized epilepsy questionnaire, medical records, EEG, MRI, and seizure videos. RESULTS: We included 57 patients (53% male, median age 8 years) with SYNGAP1 mutations (n = 53) or microdeletions (n = 4). Of the 57 patients, 56 had epilepsy: generalized in 55, with focal seizures in 7 and infantile spasms in 1. Median seizure onset age was 2 years. A novel type of drop attack was identified comprising eyelid myoclonia evolving to a myoclonic-atonic (n = 5) or atonic (n = 8) seizure. Seizure types included eyelid myoclonia with absences (65%), myoclonic seizures (34%), atypical (20%) and typical (18%) absences, and atonic seizures (14%), triggered by eating in 25%. Developmental delay preceded seizure onset in 54 of 56 (96%) patients for whom early developmental history was available. Developmental plateauing or regression occurred with seizures in 56 in the context of a developmental and epileptic encephalopathy (DEE). Fifty-five of 57 patients had intellectual disability, which was moderate to severe in 50. Other common features included behavioral problems (73%); high pain threshold (72%); eating problems, including oral aversion (68%); hypotonia (67%); sleeping problems (62%); autism spectrum disorder (54%); and ataxia or gait abnormalities (51%). CONCLUSIONS: SYNGAP1 mutations cause a generalized DEE with a distinctive syndrome combining epilepsy with eyelid myoclonia with absences and myoclonic-atonic seizures, as well as a predilection to seizures triggered by eating.

15.
Am J Med Genet A ; 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30513141

RESUMO

CACNA1C (NM_000719.6) encodes an L-type calcium voltage-gated calcium channel (Cav 1.2), and pathogenic variants have been associated with two distinct clinical entities: Timothy syndrome and Brugada syndrome. Thus far, CACNA1C has not been reported as a gene associated with epileptic encephalopathy and is less commonly associated with epilepsy. We report three individuals from two families with variants in CACNA1C. Patient 1 presented with neonatal onset epileptic encephalopathy (NOEE) and was found to have a de novo missense variant in CACNA1C (c.4087G>A (p.V1363M)) on exome sequencing. In Family 2, Patient 2 presented with congenital cardiac anomalies and cardiomyopathy and was found to have a paternally inherited splice site variant, c.3717+1_3717+2insA, on a cardiomyopathy panel. Her father, Patient 3, presented with learning difficulties, late-onset epilepsy, and congenital cardiac anomalies. Family 2 highlights variable expressivity seen within a family. This case series expands the clinical and molecular phenotype of CACNA1C-related disorders and highlights the need to include CACNA1C on epilepsy gene panels.

16.
Am J Hum Genet ; 103(6): 1022-1029, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30526861

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies characterized by refractory seizures and developmental impairment. Sequencing approaches have identified causal genetic variants in only about 50% of individuals with DEEs.1-3 This suggests that unknown genetic etiologies exist, potentially in the ∼98% of human genomes not covered by exome sequencing (ES). Here we describe seven likely pathogenic variants in regions outside of the annotated coding exons of the most frequently implicated epilepsy gene, SCN1A, encoding the alpha-1 sodium channel subunit. We provide evidence that five of these variants promote inclusion of a "poison" exon that leads to reduced amounts of full-length SCN1A protein. This mechanism is likely to be broadly relevant to human disease; transcriptome studies have revealed hundreds of poison exons,4,5 including some present within genes encoding other sodium channels and in genes involved in neurodevelopment more broadly.6 Future research on the mechanisms that govern neuronal-specific splicing behavior might allow researchers to co-opt this system for RNA therapeutics.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsia/genética , Éxons/genética , Variação Genética/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética , Canais de Sódio/genética , Transcriptoma/genética
17.
Seizure ; 62: 99-105, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30321769

RESUMO

PURPOSE: Dravet syndrome (DS) is a well-described, severe genetic epileptic encephalopathy with an increased risk of SUDEP. The incidence and genetic architecture of DS in African patients is virtually unknown, largely due to lack of awareness and unavailability of genetic testing. The clinical benefits of the available precision medicine approaches to treatment emphasise the importance of an early, correct diagnosis. We investigated the genetic causes and clinical features of DS in South African children to develop protocols for early, cost-effective diagnosis in the local setting. METHOD: We selected 22 South African children provisionally diagnosed with clinical DS for targeted resequencing of DS-associated genes. We sought to identify the clinical features most strongly associated with SCN1A-related DS, using the DS risk score and clinical co-variates under various statistical models. RESULTS: Disease-causing variants were identified in 10 of the 22 children: nine SCN1A and one PCDH19. Moreover, we showed that seizure onset before 6 months of age and a clinical DS risk score of >6 are highly predictive of SCN1A-associated DS. Clinical reassessment resulted in a revised diagnosis in 10 of the 12 variant-negative children. CONCLUSION: This first genetic study of DS in Africa confirms that de novo SCN1A variants underlie disease in the majority of South African patients. Affirming the predictive value of seizure onset before 6 months of age and a clinical DS risk score of >6 has significant practical implications for the resource-limited setting, presenting simple diagnostic criteria which can facilitate early correct treatment, specialist consultation and genetic testing.

18.
Ann Neurol ; 84(5): 788-795, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30269351

RESUMO

NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy-like phenotype in a subset of patients. Ann Neurol 2018;84:796-803.

19.
Hum Mutat ; 39(11): 1476-1484, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30311377

RESUMO

The field of epilepsy genetics is advancing rapidly and epilepsy is emerging as a frequent indication for diagnostic genetic testing. Within the larger ClinGen framework, the ClinGen Epilepsy Gene Curation Expert Panel is tasked with connecting two increasingly separate fields: the domain of traditional clinical epileptology, with its own established language and classification criteria, and the rapidly evolving area of diagnostic genetic testing that adheres to formal criteria for gene and variant curation. We identify critical components unique to the epilepsy gene curation effort, including: (a) precise phenotype definitions within existing disease and phenotype ontologies; (b) consideration of when epilepsy should be curated as a distinct disease entity; (c) strategies for gene selection; and (d) emerging rules for evaluating functional models for seizure disorders. Given that de novo variants play a prominent role in many of the epilepsies, sufficient genetic evidence is often awarded early in the curation process. Therefore, the emphasis of gene curation is frequently shifted toward an iterative precuration process to better capture phenotypic associations. We demonstrate that within the spectrum of neurodevelopmental disorders, gene curation for epilepsy-associated genes is feasible and suggest epilepsy-specific conventions, laying the groundwork for a curation process of all major epilepsy-associated genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA