Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 29(8): 2505-2519.e4, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747616

RESUMO

Human neutrophilic granulocytes form the largest pool of innate immune cells for host defense against bacterial and fungal pathogens. The dynamic changes that accompany the metamorphosis from a proliferating myeloid progenitor cell in the bone marrow into a mature non-dividing polymorphonuclear blood cell have remained poorly defined. Using mass spectrometry-based quantitative proteomics combined with transcriptomic data, we report on the dynamic changes of five developmental stages in the bone marrow and blood. Integration of transcriptomes and proteome unveils highly dynamic and differential interactions between RNA and protein kinetics during human neutrophil development, which can be linked to functional maturation of typical end-stage blood neutrophil killing activities.

2.
Blood Adv ; 3(22): 3562-3574, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31738831

RESUMO

Myeloid-derived suppressor cells (MDSCs) have the capacity to suppress T-cell-mediated immune responses and impact the clinical outcome of cancer, infections, and transplantation settings. Although MDSCs were initially described as bone marrow-derived immature myeloid cells (either monocytic or granulocytic MDSCs), mature neutrophils have been shown to exert MDSC activity toward T cells in ways that remain unclear. In this study, we demonstrated that human neutrophils from both healthy donors and cancer patients do not exert MDSC activity unless they are activated. By using neutrophils with genetically well-defined defects, we found that reactive oxygen species (ROS) and granule-derived constituents are required for MDSC activity after direct CD11b-dependent interactions between neutrophils and T cells. In addition to these cellular interactions, neutrophils are engaged in the uptake of pieces of T-cell membrane, a process called trogocytosis. Together, these interactions led to changes in T-cell morphology, mitochondrial dysfunction, and adenosine triphosphate depletion, as indicated by electron microscopy, mass spectrometry, and metabolic parameters. Our studies characterize the different steps by which activated mature neutrophils induce functional T-cell nonresponsiveness and irreparable cell damage.

3.
J Thromb Haemost ; 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675465

RESUMO

BACKGROUND: The identity of the amino acid regions of factor VIII (FVIII) that contribute to factor IXa (FIXa) and Von Willebrand Factor (VWF) binding has not been fully resolved. Previously, we observed that replacing the FVIII C1 domain for the one of factor V (FV) markedly reduces VWF binding and cofactor function. Compared to the FV C1 domain, this implies that the FVIII C1 domain comprises unique surface-exposed elements involved in VWF and FIXa interaction. OBJECTIVE: The aim of this study is to identify residues in the FVIII C1 domain that contribute to VWF and FIXa binding. METHODS: Structures and primary sequences of FVIII and FV were compared to identify surface-exposed residues unique to the FVIII C1 domain. The identified residues were replaced into alanine residues to identify their role in FIXa and VWF interaction. This role was assessed employing surface plasmon resonance analysis studies and enzyme kinetic assays. RESULTS: Five surface-exposed hydrophobic residues unique to the FVIII C1 domain, i.e.: F2035, F2068, F2127, V2130, I2139 were identified. Functional analysis indicated that residues F2068, V2130 and especially F2127 contribute to VWF and/or FIXa interaction. Substitution into alanine of the also surface-exposed V2125, which is spatially next to F2127, affected only VWF binding. CONCLUSION: The surface-exposed hydrophobic residues in C1 domain contribute to cofactor function and VWF binding. These findings provide novel information on the fundamental role of the C1 domain in FVIII life-cycle.

4.
Haematologica ; 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558672

RESUMO

In the complex with Von Willebrand Factor, factor VIII (FVIII) is protected from rapid clearance from the circulation. Although it has been established that the FVIII binding site resides in the N-terminal D'-D3 domains of Von Willebrand Factor, detailed information about the amino acid regions that contribute to FVIII binding is still lacking. In the present study, Hydrogen- deuterium exchange mass spectrometry was employed to gain insight into the FVIII binding region on Von Willebrand Factor. To this end, time-dependent deuterium incorporation was assessed in D'-D3 and the FVIII - D'-D3 complex. Data showed reduced deuterium incorporation in D region Arg782-Cys799 in the FVIII - D'-D3 complex compared to D'- D3. This implies that this region interacts with FVIII. Site-directed mutagenesis of the six-individual charged amino acids in Arg782-Cys799 into alanine residues followed by surface plasmon resonance analysis and solid phase binding studies revealed that replacement of Asp796 affected FVIII binding. A marked decrease in FVIII binding was observed for the D'-D3 Glu787Ala variant. The same was observed for D'-D3 variants in which Asp796 and Glu787 were replaced by Asn796 and Gln787. Site-directed mutagenesis of Leu786, which together with Glu787 and Cys789 forms a short helical region in the crystal structure of D'-D3, also had a marked impact on FVIII binding. The combined results show that amino acid region Arg782-Cys799 is part of a FVIII binding surface. Our study provides new insight into FVIII - Von Willebrand Factor complex formation and defects therein that may be associated with bleedings caused by markedly reduced levels of FVIII.

5.
J Thromb Haemost ; 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519061

RESUMO

BACKGROUND: Factor XI (FXI) is a zymogen in the coagulation pathway that, once activated, promotes haemostasis by activating factor IX (FIX). Substitution studies using apple domains of the homologous protein prekallikrein have identified that FIX binds to the apple 3 domain of FXI. However, the molecular changes upon activation of FXI or binding of FIX to FXIa have remained largely unresolved. OBJECTIVES: This study aimed to gain more insight in the FXI activation mechanism by identifying the molecular differences between FXI and FXIa, and in the conformational changes in FXIa induced by binding of FIX. METHODS: Hydrogen-deuterium exchange mass spectrometry was performed on FXI, FXIa, and FXIa in complex with FIX. RESULTS: Both activation and binding to FIX induced conformational changes at the interface between the catalytic domain and the apple domains of FXI(a)-more specifically at the loops connecting the apple domains. Moreover, introduction of FIX uniquely induced a reduction of deuterium uptake in the beginning of the apple 3 domain. CONCLUSIONS: We propose that the conformational changes of the catalytic domain upon activation increase the accessibility to the apple 3 domain to enable FIX binding. Moreover, our HDX MS results support the location of the proposed FIX binding site at the beginning of the apple 3 domain and suggest a mediating role in FIX binding for both loops adjacent to the apple 3 domain.

7.
Hemoglobin ; 43(2): 77-82, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31190578

RESUMO

A 4-year-old boy, a ß-thalassemia (ß-thal) carrier, with an unexplained severe chronic microcytic anemia was referred to us. Sequencing of the α-globin genes revealed a Hb Charlieu [α106(G13)Leu→Pro, HBA1: c.320T>C, p.Leu107Pro] mutation present on both HBA1 genes. Quantitative polymerase chain reaction (qPCR) confirmed αCharlieu mRNA in the proband and his parents, showing that the mutation does not affect mRNA stability. However, we were unable to detect the Hb Charlieu protein by capillary electrophoresis (CE), reverse phase electrophoresis, cation exchange electrophoresis or isoelectric focusing. Mass spectrometry (MS) allowed us to confirm the presence of the Hb Charlieu peptide in erythrocyte progenitors. These findings suggest that the mutation affects the stability of αCharlieu. As hemoglobin (Hb) heat stability tests showed no abnormalities in erythrocytes, we speculated that αCharlieu is already degraded during red blood cell (RBC) development. The clinical severity in the proband and the presence of new methylene blue-stained aggregates in his reticulocytes indicates that incorporation of αCharlieu destabilizes Hb. This, combined with an excess of unstable free α-globins as the result of ß-thal minor, results in severely impaired erythropoiesis and, as a consequence, severe and chronic microcytic anemia in the proband.

9.
Haematologica ; 104(7): 1460-1472, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30655368

RESUMO

Dominant-negative mutations in the transcription factor Growth Factor Independence-1B (GFI1B), such as GFI1BQ287*, cause a bleeding disorder characterized by a plethora of megakaryocyte and platelet abnormalities. The deregulated molecular mechanisms and pathways are unknown. Here we show that both normal and Q287* mutant GFI1B interacted most strongly with the lysine specific demethylase-1 - REST corepressor - histone deacetylase (LSD1-RCOR-HDAC) complex in megakaryoblasts. Sequestration of this complex by GFI1BQ287* and chemical separation of GFI1B from LSD1 induced abnormalities in normal megakaryocytes comparable to those seen in patients. Megakaryocytes derived from GFI1BQ287*-induced pluripotent stem cells also phenocopied abnormalities seen in patients. Proteome studies on normal and mutant-induced pluripotent stem cell-derived megakaryocytes identified a multitude of deregulated pathways downstream of GFI1BQ287* including cell division and interferon signaling. Proteome studies on platelets from GFI1BQ287* patients showed reduced expression of proteins implicated in platelet function, and elevated expression of proteins normally downregulated during megakaryocyte differentiation. Thus, GFI1B and LSD1 regulate a broad developmental program during megakaryopoiesis, and GFI1BQ287* deregulates this program through LSD1-RCOR-HDAC sequestering.

10.
J Proteomics ; 2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30153514

RESUMO

The vascular endothelium provides a unique interaction plane for plasma proteins and leukocytes in inflammation. The pro-inflammatory cytokines Tumor Necrosis Factor α (TNFα) and interleukin 1ß (IL-1ß) have a profound effect on endothelial cells, which includes increased levels of adhesion molecules and a disrupted barrier function. To assess the endothelial response to these cytokines at the protein level, we evaluated changes in the whole proteome, cell surface proteome and phosphoproteome after 24 h of cytokine treatment. The effects of TNFα and IL-1ß on endothelial cells were strikingly similar and included changes in proteins not previously associated with endothelial inflammation. Temporal profiling revealed time-dependent proteomic changes, including a limited number of early responsive proteins such as adhesion receptors ICAM1 and SELE. In addition, this approach uncovered a greater number of late responsive proteins, including proteins related to self-antigen peptide presentation, and a transient increase in ferritin. Peptide-based cell surface proteomics revealed extensive changes at the cell surface, which were in agreement with the whole proteome. In addition, site-specific changes within ITGA5 and ICAM1 were detected. Combined, our integrated proteomic data provide detailed information on endothelial inflammation, emphasize the role of the extracellular matrix therein, and include potential targets for therapeutic intervention. SIGNIFICANCE: Pro-inflammatory cytokines induce the expression of cell adhesion molecules in vascular endothelial cells. These molecules mediate the adhesion and migration of immune cells across the vessel wall, which is a key process to resolve infections in the underlying tissue. Dysregulation of endothelial inflammation can contribute to vascular diseases and the vascular endothelium is therefore an attractive target to control inflammation. Current strategies targeting endothelial adhesion molecules, including PECAM, CD99, ICAM1 and VCAM1 do not completely prevent transmigration. To identify additional therapeutic targets, we mapped the endothelial proteome after pro-inflammatory cytokine treatment. In addition to the whole proteome, we assessed the surface proteome to focus on cell adhesion molecules, and the phosphoproteome to uncover protein activation states. Here, we present an integrated overview of affected processes which further improves our understanding of endothelial inflammation and may eventually aid in therapeutic intervention of imbalanced inflammation.

11.
Biochem J ; 475(17): 2819-2830, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30111575

RESUMO

The D'-D3 fragment of von Willebrand factor (VWF) can be divided into TIL'-E'-VWD3-C8_3-TIL3-E3 subdomains of which TIL'-E'-VWD3 comprises the main factor VIII (FVIII)-binding region. Yet, von Willebrand disease (VWD) Type 2 Normandy (2N) mutations, associated with impaired FVIII interaction, have been identified in C8_3-TIL3-E3. We now assessed the role of the VWF (sub)domains for FVIII binding using isolated D', D3 and monomeric C-terminal subdomain truncation variants of D'-D3. Competitive binding assays and surface plasmon resonance analysis revealed that D' requires the presence of D3 for effective interaction with FVIII. The isolated D3 domain, however, did not show any FVIII binding. Results indicated that the E3 subdomain is dispensable for FVIII binding. Subsequent deletion of the other subdomains from D3 resulted in a progressive decrease in FVIII-binding affinity. Chemical footprinting mass spectrometry suggested increased conformational changes at the N-terminal side of D3 upon subsequent subdomain deletions at the C-terminal side of the D3. A D'-D3 variant with a VWD type 2N mutation in VWD3 (D879N) or C8_3 (C1060R) also revealed conformational changes in D3, which were proportional to a decrease in FVIII-binding affinity. A D'-D3 variant with a putative VWD type 2N mutation in the E3 subdomain (C1225G) showed, however, normal binding. This implies that the designation VWD type 2N is incorrect for this variant. Results together imply that a structurally intact D3 in D'-D3 is indispensable for effective interaction between D' and FVIII explaining why specific mutations in D3 can impair FVIII binding.

12.
PLoS One ; 13(8): e0201690, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138317

RESUMO

Erythropoiesis is regulated at many levels, including control of mRNA translation. Changing environmental conditions, such as hypoxia or the availability of nutrients and growth factors, require a rapid response enacted by the enhanced or repressed translation of existing transcripts. Cold shock domain protein e1 (Csde1/Unr) is an RNA-binding protein required for erythropoiesis and strongly upregulated in erythroblasts relative to other hematopoietic progenitors. The aim of this study is to identify the Csde1-containing protein complexes and investigate their role in post-transcriptional expression control of Csde1-bound transcripts. We show that Serine/Threonine kinase receptor-associated protein (Strap/Unrip), was the protein most strongly associated with Csde1 in erythroblasts. Strap is a WD40 protein involved in signaling and RNA splicing, but its role when associated with Csde1 is unknown. Reduced expression of Strap did not alter the pool of transcripts bound by Csde1. Instead, it altered the mRNA and/or protein expression of several Csde1-bound transcripts that encode for proteins essential for translational regulation during hypoxia, such as Hmbs, eIF4g3 and Pabpc4. Also affected by Strap knockdown were Vim, a Gata-1 target crucial for erythrocyte enucleation, and Elavl1, which stabilizes Gata-1 mRNA. The major cellular processes affected by both Csde1 and Strap were ribosome function and cell cycle control.

13.
BMJ Open ; 8(5): e020686, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724741

RESUMO

INTRODUCTION: It is challenging to obtain a reliable bleeding history in children who are referred for a suspected inherited bleeding disorder. Bleeding symptoms may be subtle as children face fewer haemostatic challenges compared with adults. In order to standardise bleeding histories, questionnaires have been developed, called bleeding assessment tools (BATs). Although it has been shown that high bleeding scores are associated with the presence of a mucocutaneous bleeding disorder, these BATs lack sensitivity, efficiency and flexibility in the paediatric setting. We developed a new BAT (the iCHEC (identifying Children with HEreditary Coagulation disorders) BAT) to improve on these characteristics. We aim to evaluate the diagnostic accuracy of the iCHEC BAT as a screening tool for children who are suspected for having a bleeding disorder. METHODS AND ANALYSIS: This is a prospective cohort study. Children (age 0-18 years) suspected for a bleeding disorder who present at tertiary haematology clinics, and/or their parents/guardians, will be asked to complete the iCHEC BAT. Sensitivity was increased by inclusion of paediatric-specific bleeding symptoms and novel qualitative questions per bleeding symptom. Efficiency was improved by developing a self-administered (online) version of the questionnaire. Flexibility for changes in the bleeding phenotype of developing children was improved by including questions that define when the bleeding symptoms occurred in the past. The diagnostic accuracy of the specific bleeding items will be evaluated by receiver operator characteristic curves, using classification based on the results from laboratory assessment as the reference standard. Analysis of the discriminative power of individual bleeding symptoms will be assessed. ETHICS AND DISSEMINATION: The study has been approved by the medical ethics committees of all participating centres in the Netherlands, Canada and the UK. All paediatric subjects and/or their parents/guardians will provide written informed consent. Study results will be submitted for publication in peer-reviewed journals.

14.
Haematologica ; 103(6): 1083-1092, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29567779

RESUMO

Formation of microthrombi is a hallmark of acquired thrombotic thrombocytopenic purpura. These microthrombi originate from insufficient processing of ultra large von Willebrand factor multimers by ADAMTS13 due to the development of anti-ADAMTS13 autoantibodies. Several studies have identified the major histocompatibility complex class II alleles HLA-DRB1*11, HLA-DQB1*03 and HLA-DQB1*02:02 as risk factors for acquired thrombotic thrombocytopenic purpura development. Previous research in our department indicated that ADAMTS13 CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR are presented on HLA-DRB1*11 and HLA-DRB1*03, respectively. Here, we describe the repertoire of ADAMTS13 peptides presented on HLA-DQ. In parallel, the repertoire of ADAMTS13-derived peptides presented on HLA-DR was monitored. Using HLA-DR- and HLA-DQ-specific antibodies, we purified HLA/peptide complexes from ADAMTS13-pulsed monocyte-derived dendritic cells. Using this approach, we identified ADAMTS13-derived peptides presented on HLA-DR for all 9 samples analyzed; ADAMTS13-derived peptides presented on HLA-DQ were identified in 4 out of 9 samples. We were able to confirm the presentation of the CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR on HLA-DR. In total, 12 different core-peptide sequences were identified on HLA-DR and 8 on HLA-DQ. For HLA-DR11, several potential new core-peptides were found; 4 novel core-peptides were exclusively identified on HLA-DQ. Furthermore, an in silico analysis was performed using the EpiMatrix and JanusMatrix tools to evaluate the eluted peptides, in the context of HLA-DR, for putative effector or regulatory T-cell responses at the population level. The results from this study provide a basis for the identification of immuno-dominant epitopes on ADAMTS13 involved in the onset of acquired thrombotic thrombocytopenic purpura.

15.
Sci Rep ; 8(1): 2628, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422612

RESUMO

Expression of the RNA-binding protein Csde1 (Cold shock domain protein e1) is strongly upregulated during erythropoiesis compared to other hematopoietic lineages. Csde1 expression is impaired in the severe congenital anemia Diamond Blackfan Anemia (DBA), and reduced expression of Csde1 in healthy erythroblasts impaired their proliferation and differentiation. To investigate the cellular pathways controlled by Csde1 in erythropoiesis, we identified the transcripts that physically associate with Csde1 in erythroid cells. These mainly encoded proteins involved in ribogenesis, mRNA translation and protein degradation, but also proteins associated with the mitochondrial respiratory chain and mitosis. Crispr/Cas9-mediated deletion of the first cold shock domain of Csde1 affected RNA expression and/or protein expression of Csde1-bound transcripts. For instance, protein expression of Pabpc1 was enhanced while Pabpc1 mRNA expression was reduced indicating more efficient translation of Pabpc1 followed by negative feedback on mRNA stability. Overall, the effect of reduced Csde1 function on mRNA stability and translation of Csde1-bound transcripts was modest. Clones with complete loss of Csde1, however, could not be generated. We suggest that Csde1 is involved in feed-back control in protein homeostasis and that it dampens stochastic changes in mRNA expression.

16.
J Allergy Clin Immunol ; 142(4): 1285-1296, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29477724

RESUMO

BACKGROUND: The genetic cause of primary immunodeficiency disease (PID) carries prognostic information. OBJECTIVE: We conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource-Rare Diseases cohort. METHODS: In the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses. RESULTS: Both sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21low B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases. CONCLUSION: We show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells.

17.
Thromb Haemost ; 118(2): 340-350, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29378358

RESUMO

Coagulation factor XI is activated by thrombin or factor XIIa resulting in a conformational change that converts the catalytic domain into its active form and exposing exosites for factor IX on the apple domains. Although crystal structures of the zymogen factor XI and the catalytic domain of the protease are available, the structure of the apple domains and hence the interactions with the catalytic domain in factor XIa are unknown. We now used chemical footprinting to identify lysine residue containing regions that undergo a conformational change following activation of factor XI. To this end, we employed tandem mass tag in conjunction with mass spectrometry. Fifty-two unique peptides were identified, covering 37 of the 41 lysine residues present in factor XI. Two identified lysine residues that showed altered flexibility upon activation were mutated to study their contribution in factor XI stability or enzymatic activity. Lys357, part of the connecting loop between A4 and the catalytic domain, was more reactive in factor XIa but mutation of this lysine residue did not impact on factor XIa activity. Lys516 and its possible interactor Glu380 are located in the catalytic domain and are covered by the activation loop of factor XIa. Mutating Glu380 enhanced Arg369 cleavage and thrombin generation in plasma. In conclusion, we have identified novel regions that undergo a conformational change following activation. This information improves knowledge about factor XI and will contribute to development of novel inhibitors or activators for this coagulation protein.

18.
Haematologica ; 103(1): 172-178, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025906

RESUMO

The development of anti-factor VIII antibodies is a major complication of the treatment of patients with hemophilia A. Generation of high affinity anti-factor VIII antibodies is dependent on help provided by CD4+ T cells that recognize factor VIII-derived peptides presented on class II major histocompatibility complex on the surface of antigen-presenting cells. In order to identify the immune-dominant epitopes that can be presented to CD4+ T cells, we previously developed a mass spectrometry-based method to identify factor VIII-derived peptides that are presented on human leukocyte antigen (HLA)-DR. In the present work, we compared the repertoire of FVIII-derived peptide presented on HLA-DR and HLA-DQ. Monocyte-derived dendritic cells from nine HLA-typed healthy donors were pulsed with recombinant factor VIII. HLA-DR and HLA-DQ molecules were purified using monoclonal antibodies. Our data show that HLA-DQ and HLA-DR present a similar repertoire of factor VIII-derived peptides. However, the number of peptides associated with HLA-DQ was lower than that with HLA-DR. We also identified a peptide, within the acidic a3 domains of factor VIII, which is presented with higher frequency on HLA-DQ. Interestingly, this peptide was found to have a higher predicted affinity for HLA-DQ than for HLA-DR. Taken together, our data suggest that HLA-DQ participates in the presentation of factor VIII peptides, thereby contributing to the development of inhibitory antibodies in a proportion of patients with severe hemophilia A.

19.
Sci Rep ; 7(1): 11045, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887518

RESUMO

Shelf life of platelet concentrates is limited to 5-7 days due to loss of platelet function during storage, commonly referred to as the platelet storage lesion (PSL). To get more insight into the development of the PSL, we used label free quantitative mass spectrometry to identify changes in the platelet proteome during storage. In total 2501 proteins were accurately quantified in 3 biological replicates on at least 1 of the 7 different time-points analyzed. Significant changes in levels of 21 proteins were observed over time. Gene ontology enrichment analysis of these proteins revealed that the majority of this set was involved in platelet degranulation, secretion and regulated exocytosis. Twelve of these proteins have been shown to reside in α-granules. Upon prolonged storage (13-16 days) elevated levels of α-2-macroglobulin, glycogenin and Ig µ chain C region were identified. Taken together this study identifies novel markers for monitoring of the PSL that may potentially also be used for the detection of "young" and "old" platelets in the circulation.

20.
Arterioscler Thromb Vasc Biol ; 37(10): 1891-1902, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28818855

RESUMO

OBJECTIVE: Thrombin is the key serine protease of the coagulation cascade and mediates cellular responses by activation of PARs (protease-activated receptors). The predominant thrombin receptor is PAR1, and in endothelial cells (ECs), thrombin dynamically regulates a plethora of phosphorylation events. However, it has remained unclear whether thrombin signaling is exclusively mediated through PAR1. Furthermore, mechanistic insight into activation and inhibition of PAR1-mediated EC signaling is lacking. In addition, signaling networks of biased PAR1 activation after differential cleavage of the PAR1 N terminus have remained an unresolved issue. APPROACH AND RESULTS: Here, we used a quantitative phosphoproteomics approach to show that classical and peptide activation of PAR1 induce highly similar signaling, that low thrombin concentrations initiate only limited phosphoregulation, and that the PAR1 inhibitors vorapaxar and parmodulin-2 demonstrate distinct antagonistic properties. Subsequent analysis of the thrombin-regulated phosphosites in the presence of PAR1 inhibitors revealed that biased activation of PAR1 is not solely linked to a specific G-protein downstream of PAR1. In addition, we showed that only the canonical thrombin PAR1 tethered ligand induces extensive early phosphoregulation in ECs. CONCLUSIONS: Our study provides detailed insight in the signaling mechanisms downstream of PAR1. Our data demonstrate that thrombin-induced EC phosphoregulation is mediated exclusively through PAR1, that thrombin and thrombin-tethered ligand peptide induce similar phosphoregulation, and that only canonical PAR1 cleavage by thrombin generates a tethered ligand that potently induces early signaling. Furthermore, platelet PAR1 inhibitors directly affect EC signaling, indicating that it will be a challenge to design a PAR1 antagonist that will target only those pathways responsible for tissue pathology.


Assuntos
Células Endoteliais/fisiologia , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/fisiologia , Humanos , Lactonas/farmacologia , Fosforilação , Proteômica , Piridinas/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA