Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(6): 11205-11214, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460221

RESUMO

Herein, we report an atomic layer deposition (ALD) process for Cu2O thin films using copper(II) acetate [Cu(OAc)2] and water vapor as precursors. This precursor combination enables the deposition of phase-pure, polycrystalline, and impurity-free Cu2O thin films at temperatures of 180-220 °C. The deposition of Cu(I) oxide films from a Cu(II) precursor without the use of a reducing agent is explained by the thermally induced reduction of Cu(OAc)2 to the volatile copper(I) acetate, CuOAc. In addition to the optimization of ALD process parameters and characterization of film properties, we studied the Cu2O films in the fabrication of photoconductor devices. Our proof-of-concept devices show that approximately 20 nm thick Cu2O films can be used for photodetection in the visible wavelength range and that the thin film photoconductors exhibit improved device characteristics in comparison to bulk Cu2O crystals.

2.
Angew Chem Int Ed Engl ; 57(44): 14538-14542, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30048031

RESUMO

Rhenium is both a refractory metal and a noble metal that has attractive properties for various applications. Still, synthesis and applications of rhenium thin films have been limited. We introduce herein the growth of both rhenium metal and rhenium nitride thin films by the technologically important atomic layer deposition (ALD) method over a wide deposition temperature range using fast, simple, and robust surface reactions between rhenium pentachloride and ammonia. Films are grown and characterized for compositions, surface morphologies and roughnesses, crystallinities, and resistivities. Conductive rhenium subnitride films of tunable composition are obtained at deposition temperatures between 275 and 375 °C, whereas pure rhenium metal films grow at 400 °C and above. Even a just 3 nm thick rhenium film is continuous and has a low resistivity of about 90 µΩ cm showing potential for applications for which also other noble metals and refractory metals have been considered.

3.
Small ; 14(21): e1800547, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29673074

RESUMO

Semiconducting 2D materials, such as SnS2 , hold immense potential for many applications ranging from electronics to catalysis. However, deposition of few-layer SnS2 films has remained a great challenge. Herein, continuous wafer-scale 2D SnS2 films with accurately controlled thickness (2 to 10 monolayers) are realized by combining a new atomic layer deposition process with low-temperature (250 °C) postdeposition annealing. Uniform coating of large-area and 3D substrates is demonstrated owing to the unique self-limiting growth mechanism of atomic layer deposition. Detailed characterization confirms the 1T-type crystal structure and composition, smoothness, and continuity of the SnS2 films. A two-stage deposition process is also introduced to improve the texture of the films. Successful deposition of continuous, high-quality SnS2 films at low temperatures constitutes a crucial step toward various applications of 2D semiconductors.

4.
Adv Mater ; 30(24): e1703622, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29315833

RESUMO

2D materials research is advancing rapidly as various new "beyond graphene" materials are fabricated, their properties studied, and materials tested in various applications. Rhenium disulfide is one of the 2D transition metal dichalcogenides that has recently shown to possess extraordinary properties such as that it is not limited by the strict monolayer thickness requirements. The unique inherent decoupling of monolayers in ReS2 combined with a direct bandgap and highly anisotropic properties makes ReS2 one of the most interesting 2D materials for a plethora of applications. Here, a highly controllable and precise atomic layer deposition (ALD) technique is applied to deposit ReS2 thin films. Film growth is demonstrated on large area (5 cm × 5 cm) substrates at moderate deposition temperatures between 120 and 500 °C, and the films are extensively characterized using field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy, X-ray diffractometry using grazing incidence, atomic force microscopy, focused ion beam/transmission electron microscopy, X-ray photoelectron spectroscopy, and time-of-flight elastic recoil detection analysis techniques. The developed ReS2 ALD process highlights the potential of the material for applications beyond planar structure architectures. The ALD process also offers a route to an upgrade to an industrial scale.

5.
Phys Rev Lett ; 113(10): 106103, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25238371

RESUMO

We study a crystalline epitaxial alumina thin film with the characteristics of a spinel-type transition Al2O3(100) surface by using atom-resolved noncontact atomic force microscopy and density functional theory. It is shown that the films are terminated by an Al-O layer rich in Al vacancies, exhibiting a strong preference for surface hydroxyl group formation in two configurations. The transition alumina films are crystalline and perfectly stable in ambient atmospheres, a quality which is expected to open the door to new fundamental studies of the surfaces of transition aluminas.

6.
Nanotechnology ; 24(3): 035602, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23263704

RESUMO

Self-assembly is a phenomenon that continuously occurs at the nanoscale, as atoms form predetermined building blocks such as molecules and clusters, which then themselves gather into structures of a larger scale. The interplay of competing forces is a decisive factor in the emergence of these organized systems, but the precise mechanism by which this self-assembly progresses is seldom known. Using a combination of physical cluster deposition and atomic force microscopy, we have investigated the spontaneous formation of µm-sized rings of SiO(x)-supported metal nanoclusters. With the help of molecular dynamics simulations, we show that the competition between short-range van der Waals attractions and long-range repulsive dipolar forces, induced by the ionic surface, plays a key role in the self-assembly of these structures.

7.
Nanotechnology ; 23(40): 405705, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22995859

RESUMO

Carbon nanotube terminated atomic force microscopy (AFM) probes have been used for the imaging of 5 nm wide surface supported Pt nanoclusters by non-contact (dynamic mode) AFM in an ultra-high vacuum. The results are compared to AFM measurements done with conventional Si-tips, as well as with transmission electron microscopy images, which give accurate measures for cluster widths. Despite their ideal aspect ratio, tip-broadening is concluded to be a severe problem even when imaging with carbon nanotube tips, which overestimates the cluster width by several times the nominal width of the nanotube tip. This broadening is attributed to a bending of the carbon nanotubes, and not to pure geometrical factors, which coincidentally results in a significant improvement for relative height measurements of tightly spaced high aspect ratio structures, as compared to what can be achieved with geometrically limited conventional probes. Superior durability also stands out as a defining feature of carbon nanotube terminated probes, allowing them to give results with a greatly enhanced reproducibility.

8.
Beilstein J Nanotechnol ; 3: 192-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496991

RESUMO

Based on high-resolution noncontact atomic force microscopy (NC-AFM) experiments we reveal a detailed structural model of the polar (111) surface of the insulating ternary metal oxide, MgAl(2)O(4) (spinel). NC-AFM images reveal a 6√3×6√3R30° superstructure on the surface consisting of patches with the original oxygen-terminated MgAl(2)O(4)(111) surface interrupted by oxygen-deficient areas. These observations are in accordance with previous theoretical studies, which predict that the polarity of the surface can be compensated by removal of a certain fraction of oxygen atoms. However, instead of isolated O vacancies, it is observed that O is removed in a distinct pattern of line vacancies reflected by the underlying lattice structure. Consequently, by the creation of triangular patches in a 6√3×6√3R30° superstructure, the polar-stabilization requirements are met.

9.
Phys Rev Lett ; 107(3): 036102, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838378

RESUMO

From an interplay of atom-resolved noncontact atomic force microscopy, surface x-ray diffraction experiments, and density functional theory calculations, we reveal the detailed atomic-scale structure of the (100) surface of an insulating ternary metal oxide, MgAl2O4 (spinel). We surprisingly find that the MgAl2O4(100) surface is terminated by an Al and O-rich structure with a thermodynamically favored amount of Al atoms interchanged with Mg. This finding implies that so-called Mg-Al antisites, which are defects in the bulk of MgAl2O4, become a thermodynamically stable and integral part of the surface.

10.
Analyst ; 136(18): 3777-82, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21789315

RESUMO

Collagen, the major component of extracellular matrix (ECM) and the most abundant protein in the human body, is implicated in the development of atherosclerosis. Collagen types I and III were immobilized on fused-silica capillary to investigate their shape, size and structure by atomic force microscopy (AFM). For comparison, collagen was also immobilized on a mica surface. Our studies demonstrated that not only does the adsorption pattern on the substrate vary with the type of collagen, but also the substrate material plays an important role in the fibril formation process. Decorin, which promotes the binding of low-density lipoprotein (LDL) particles with collagen, was investigated for its effect on the fibrillogenesis. On both substrate materials, addition of decorin clearly reduced the fibril diameter of collagen surfaces. Moreover, a quartz crystal microbalance (QCM)-based biosensor approach was applied to clarify and evaluate the affinity of different collagen coatings immobilized on a silicon dioxide sensor chip toward apolipoprotein B-100, the major protein of LDL. The results confirmed the importance of collagen type and their fibrillogenesis on the binding of the positive residues of apolipoprotein B-100 on negatively charged collagen surfaces.


Assuntos
Apolipoproteína B-100/metabolismo , Colágeno Tipo III/metabolismo , Colágeno Tipo I/metabolismo , Decorina/metabolismo , Microscopia de Força Atômica , Técnicas de Microbalança de Cristal de Quartzo , Colágeno Tipo I/química , Colágeno Tipo III/química , Decorina/química , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Ligação Proteica , Dióxido de Silício/química , Propriedades de Superfície
11.
ACS Nano ; 5(7): 5987-94, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21671628

RESUMO

ZnO is a wide band gap metal oxide with a very interesting combination of semiconducting, transparent optical and catalytic properties. Recently, an amplified interest in ZnO has appeared due to the impressive progress made in nanofabrication of tailored ZnO nanostructures and functional surfaces. However, the fundamental principles governing the structure of even the clean low-index ZnO surfaces have not been adequately explained. From an interplay of high-resolution scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure (NEXAFS) spectroscopy experiments, and density functional theory (DFT) calculations, we identify here a group of hitherto unresolved surface structures which stabilize the clean polar O-terminated ZnO(0001) surface. The found honeycomb structures are truly remarkable since their existence deviates from expectations using a conventional electrostatic model which applies to the opposite Zn-terminated (0001) surface. As a common principle, the differences for the clean polar ZnO surfaces are explained by a higher bonding flexibility of the exposed 3-fold coordinated surface Zn atoms as compared to O atoms.

12.
Anal Biochem ; 383(1): 38-43, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18782553

RESUMO

An electrochromatographic method was developed for the in situ delipidation of intact low-density lipoprotein (LDL) particles immobilized on the inner wall of a 50-microm inner diameter silica capillary. In this method, the immobilized LDL particles were delipidated with nonionic surfactant Nonidet P-40 at pH 7.4 and 25 degrees C, resulting in an apolipoprotein B-100 (apoB-100)-coated capillary surface. The mobility of the electroosmotic flow marker dimethyl sulfoxide gave information about the surface charge, and the retention factors of beta-estradiol, testosterone, and progesterone were informative of the surface hydrophobicity. The calculated distribution coefficients of the steroids produced specific information about the affinity interactions of the steroids, with capillary surfaces coated either with intact LDL particles or with apoB-100. Delipidation with Nonidet P-40 resulted in a strong decrease in the hydrophobicity of the LDL coating. Atomic force microscopy images confirmed the loss of lipids from the LDL particles and the presence of apoB-100 protein coating. The in situ delipidation of LDL particles in capillaries represents a novel approach for the isolation of immobilized apoB-100 and for the determination of its pI value. The technique requires extremely low quantities of LDL particles, and it is simple and fast.


Assuntos
Apolipoproteína B-100/química , Eletrocromatografia Capilar/métodos , Lipoproteínas LDL/sangue , Humanos , Ponto Isoelétrico , Lipoproteínas LDL/análise
13.
Electrophoresis ; 29(4): 852-62, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18213602

RESUMO

PEG-stabilized lipid aggregates are a promising new class of model membranes in biotechnical and pharmaceutical applications. CE techniques, field-flow fractionation, light scattering, quartz crystal microbalance (QCM), and microscopic techniques were used to study aggregates composed of 1-palmitoyl-2-oleyl-sn-glycero-phosphatidylcholine (POPC) and PEG-lipid conjugates. The PEG-lipids, with PEG molar masses of 1000, 2000, and 3000, were 1,2-diacyl-sn-glycero-3-phosphoethanolamine-N-[methoxy-(PEG)] derivatives with either dimyristoyl (DM, 14:0) or distearoyl (DS, 18:0) acyl groups. The 80/20 mol% POPC/PEG-lipid dispersions in HEPES at pH 7.4 were extruded through 100 nm size membranes. Asymmetrical flow field-flow fractionation (AsFlFFF), photon correlation spectroscopy (PCS), and dynamic light scattering (DLS) were used to determine the sizes of POPC and the PEGylated aggregates. All methods demonstrated that the DSPEG-lipid sterically stabilized aggregates were smaller in size than pure POPC vesicles. The zeta potentials of the aggregates were measured and showed an increase from -19 mV for pure POPC to -4 mV for the POPC/DSPEG3000 aggregates. Atomic force microscopy (AFM), electron cryo-microscopy (EM), and multifrequency QCM studies were made to achieve information about the PEGylated coatings on silica. Lipid aggregates with different POPC/DSPEG3000-lipid ratios were applied as capillary coating material, and the 80/20 mol% composition was found to give the most suppressed and stable EOFs. Mixtures of low-molar-mass drugs and FITC-labeled amino acids were separated with the PEGylated aggregates as carriers (EKC) or as coating material (CEC). Detection was made by UV and LIF.


Assuntos
Eletroforese Capilar/métodos , Lipossomos/química , Fosfatidilcolinas/química , Polietilenoglicóis/química , Aminoácidos/análise , Microscopia Crioeletrônica/métodos , Micelas , Microscopia de Força Atômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA