Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-31568673

RESUMO

Variants in GABRA1 have been associated with different epilepsies ranging from mild generalized forms to epileptic encephalopathies. Despite the broad clinical spectrum, phenotypes were found to be largely concordant within families. Contrary to this observation, we report monozygotic twin sisters with generalized epilepsy due to the c.541C>T; p.(Pro181Ser) de novo variant in GABRA1. One experienced juvenile absence seizures promptly responding to first-line medication, whereas the second developed severe treatment-refractory epilepsy with febrile, absence, atonic, and tonic-clonic seizures indicating marked intrafamilial variability in GABRA1-related epilepsy. Moreover, we provide a molecular characterization of the novel variant based on recently published structural data.

2.
Eur Heart J ; 40(37): 3097-3107, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504448

RESUMO

AIMS: Sodium-channel blockers (SCBs) are associated with arrhythmia, but variability of cardiac electrical response remains unexplained. We sought to identify predictors of ajmaline-induced PR and QRS changes and Type I Brugada syndrome (BrS) electrocardiogram (ECG). METHODS AND RESULTS: In 1368 patients that underwent ajmaline infusion for suspected BrS, we performed measurements of 26 721 ECGs, dose-response mixed modelling and genotyping. We calculated polygenic risk scores (PRS) for PR interval (PRSPR), QRS duration (PRSQRS), and Brugada syndrome (PRSBrS) derived from published genome-wide association studies and used regression analysis to identify predictors of ajmaline dose related PR change (slope) and QRS slope. We derived and validated using bootstrapping a predictive model for ajmaline-induced Type I BrS ECG. Higher PRSPR, baseline PR, and female sex are associated with more pronounced PR slope, while PRSQRS and age are positively associated with QRS slope (P < 0.01 for all). PRSBrS, baseline QRS duration, presence of Type II or III BrS ECG at baseline, and family history of BrS are independently associated with the occurrence of a Type I BrS ECG, with good predictive accuracy (optimism-corrected C-statistic 0.74). CONCLUSION: We show for the first time that genetic factors underlie the variability of cardiac electrical response to SCB. PRSBrS, family history, and a baseline ECG can predict the development of a diagnostic drug-induced Type I BrS ECG with clinically relevant accuracy. These findings could lead to the use of PRS in the diagnosis of BrS and, if confirmed in population studies, to identify patients at risk for toxicity when given SCB.

3.
Stem Cell Res ; 39: 101531, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31419739

RESUMO

Induced pluripotent stem cells (iPSCs) can be used to generate different somatic cell types in vitro, including insulin-producing pancreatic ß-cells. Here, we have generated iPSCs from a healthy male individual using an episomal reprogramming method. The resulting iPSCs are integration-free, have a normal karyotype and are pluripotent in vitro and in vivo. Furthermore, we show that this iPSC line can be differentiated into pancreatic lineage cells. Taken together, this iPSC line will be useful to test differentiation protocols towards ß-cell as well as other cell types and will also serve as a control for drug development and disease modelling studies.

4.
Dtsch Arztebl Int ; 116(12): 197-204, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-31056085

RESUMO

BACKGROUND: In developed countries, global developmental disorders are encounter- ed in approximately 1% of all children. The causes are manifold, and no exogenous cause can be identified in about half of the affected children. The parallel investi- gation of the coding sequences of all genes of the affected individual (whole exome sequencing, WES) has developed into a successful diagnostic method for identify- ing the cause of the problem. It is not yet clear, however, when WES should best be used in routine clinical practice in order to exploit the potential of this method to the fullest. METHODS: In an interdisciplinary study, we carried out standardized clinical pheno- typing and a systematic genetic analysis (WES of the index patient and his or her parents, so-called trio WES) in 50 children with developmental disturbances of unclear etiology and with nonspecific neurological manifestations. RESULTS: In 21 children (42% of the collective), we were able to identify the cause of the disorder by demonstrating a mutation in a gene known to be associated with disease. Three of these children subsequently underwent specific treatment. In 22 other children (44%), we detected possibly etiological changes in candidate genes not currently known to be associated with human disease. CONCLUSION: Our detection rate of at least 42% is high in comparison with the results obtained in other studies from Germany and other countries to date and implies that WES can be used to good effect as a differential diagnostic tool in pediatric neurol- ogy. WES should be carried out in both the index patient and his or her parents (trio- WES) and accompanied by close interdisciplinary collaboration of human geneti- cists and pediatricians, by comprehensive and targeted phenotyping (also after the diagnosis is established), and by the meticulous evaluation of all gene variants.

5.
PLoS One ; 14(5): e0216222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075152

RESUMO

BACKGROUND: Fibrinogen is an essential hemostatic factor and cardiovascular disease risk factor. Early attempts at evaluating the causal effect of fibrinogen on coronary heart disease (CHD) and myocardial infraction (MI) using Mendelian randomization (MR) used single variant approaches, and did not take advantage of recent genome-wide association studies (GWAS) or multi-variant, pleiotropy robust MR methodologies. METHODS AND FINDINGS: We evaluated evidence for a causal effect of fibrinogen on both CHD and MI using MR. We used both an allele score approach and pleiotropy robust MR models. The allele score was composed of 38 fibrinogen-associated variants from recent GWAS. Initial analyses using the allele score used a meta-analysis of 11 European-ancestry prospective cohorts, free of CHD and MI at baseline, to examine incidence CHD and MI. We also applied 2 sample MR methods with data from a prevalent CHD and MI GWAS. Results are given in terms of the hazard ratio (HR) or odds ratio (OR), depending on the study design, and associated 95% confidence interval (CI). In single variant analyses no causal effect of fibrinogen on CHD or MI was observed. In multi-variant analyses using incidence CHD cases and the allele score approach, the estimated causal effect (HR) of a 1 g/L higher fibrinogen concentration was 1.62 (CI = 1.12, 2.36) when using incident cases and the allele score approach. In 2 sample MR analyses that accounted for pleiotropy, the causal estimate (OR) was reduced to 1.18 (CI = 0.98, 1.42) and 1.09 (CI = 0.89, 1.33) in the 2 most precise (smallest CI) models, out of 4 models evaluated. In the 2 sample MR analyses for MI, there was only very weak evidence of a causal effect in only 1 out of 4 models. CONCLUSIONS: A small causal effect of fibrinogen on CHD is observed using multi-variant MR approaches which account for pleiotropy, but not single variant MR approaches. Taken together, results indicate that even with large sample sizes and multi-variant approaches MR analyses still cannot exclude the null when estimating the causal effect of fibrinogen on CHD, but that any potential causal effect is likely to be much smaller than observed in epidemiological studies.

6.
J Inherit Metab Dis ; 42(5): 909-917, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31059585

RESUMO

Diagnostics for suspected mitochondrial disease (MD) can be challenging and necessitate invasive procedures like muscle biopsy. This is due to the extremely broad genetic and phenotypic spectrum, disease genes on both nuclear and mitochondrial DNA (mtDNA), and the tissue specificity of mtDNA variants. Exome sequencing (ES) has revolutionized the diagnostics for MD. However, the nuclear and mtDNA are investigated with separate tests, increasing costs and duration of diagnostics. The full potential of ES is often not exploited as the additional analysis of "off-target reads" deriving from the mtDNA can be used to analyze both genomes. We performed mtDNA analysis by ES of 2111 cases in a clinical setting. We further assessed the recall rate and precision as well as the estimation of heteroplasmy by ES data by comparison with targeted mtDNA next generation sequencing in 49 cases. ES identified known pathogenic mtDNA point mutations in 38 individuals, increasing the diagnostic yield by nearly 2%. Analysis of mtDNA variants by ES had a high recall rate (96.2 ± 5.6%) and an excellent precision (99.5 ± 2.2%) when compared to the gold standard of targeted mtDNA next generation sequencing. ES estimated heteroplasmy levels with an average difference of 6.6 ± 3.8%, sufficient for clinical decision making. Taken together, the mtDNA analysis from ES is of sufficient quality for clinical diagnostics. We therefore propose ES, investigating both nuclear and mtDNA, as first line test in individuals with suspected MD. One should be aware, that a negative result does not exclude MD and necessitates further test (in additional tissues).

7.
Ann Clin Transl Neurol ; 6(5): 968-973, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31139695

RESUMO

Developmental and epileptic encephalopathies are characterized by infantile seizures and psychomotor delay. Glycosylphosphatidylinositol biosynthesis defects, resulting in impaired tethering of various proteins to the cell surface, represent the underlying pathology in some patients. One of the genes involved, PIGP, has recently been associated with infantile seizures and developmental delay in two siblings. Here, we report the second family with a markedly overlapping phenotype due to a homozygous frameshift mutation (c.456delA;p.Glu153Asnfs*34) in PIGP. Flow cytometry of patient granulocytes confirmed reduced expression of glycosylphosphatidylinositol-anchored proteins as functional consequence. Our findings corroborate PIGP as a monogenic disease gene for developmental and epileptic encephalopathy.

8.
Clin Genet ; 96(2): 134-139, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30945277

RESUMO

Pre-axial polydactyly (PPD) is characterized by well-developed non-functional 1st digit (thumb) duplication in hands and/or feet. It is mostly inherited in autosomal dominant manner. In the present study, two families of Pakistani origin, demonstrating unilateral PPD type A, have been characterized at clinical and genetic levels. Whole-exome sequencing (WES) revealed a nonsense mutation (c.84C > A, p.Tyr28*) in the STKLD1, located on chromosome 9q34.2, in affected individuals of both the families. Our findings report the first direct involvement of the STKLD1 in the digit development and highlight the importance of inclusion of this gene for screening individuals presenting non-syndromic recessive PPD.

9.
Mol Metab ; 24: 80-97, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30930126

RESUMO

OBJECTIVE: Hundreds of missense mutations in the coding region of PDX1 exist; however, if these mutations predispose to diabetes mellitus is unknown. METHODS: In this study, we screened a large cohort of subjects with increased risk for diabetes and identified two subjects with impaired glucose tolerance carrying common, heterozygous, missense mutations in the PDX1 coding region leading to single amino acid exchanges (P33T, C18R) in its transactivation domain. We generated iPSCs from patients with heterozygous PDX1P33T/+, PDX1C18R/+ mutations and engineered isogenic cell lines carrying homozygous PDX1P33T/P33T, PDX1C18R/C18R mutations and a heterozygous PDX1 loss-of-function mutation (PDX1+/-). RESULTS: Using an in vitro ß-cell differentiation protocol, we demonstrated that both, heterozygous PDX1P33T/+, PDX1C18R/+ and homozygous PDX1P33T/P33T, PDX1C18R/C18R mutations impair ß-cell differentiation and function. Furthermore, PDX1+/- and PDX1P33T/P33T mutations reduced differentiation efficiency of pancreatic progenitors (PPs), due to downregulation of PDX1-bound genes, including transcription factors MNX1 and PDX1 as well as insulin resistance gene CES1. Additionally, both PDX1P33T/+ and PDX1P33T/P33T mutations in PPs reduced the expression of PDX1-bound genes including the long-noncoding RNA, MEG3 and the imprinted gene NNAT, both involved in insulin synthesis and secretion. CONCLUSIONS: Our results reveal mechanistic details of how common coding mutations in PDX1 impair human pancreatic endocrine lineage formation and ß-cell function and contribute to the predisposition for diabetes.

10.
Clin Genet ; 95(5): 582-589, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30868567

RESUMO

Congenital heart defects (CHDs) are the most common birth defect with 30%-40% being explained by genetic aberrations. With next generation sequencing becoming widely available, we sought to evaluate the clinical utility of exome sequencing (ES) in prenatally diagnosed CHD. We retrospectively analyzed the diagnostic yield as well as non-conclusive and incidental findings in 30 cases with prenatally diagnosed CHDs using ES, mostly as parent-child trios. A genetic diagnosis was established in 20% (6/30). Non-conclusive results were found in 13% (4/30) and incidental findings in 10% (3/30). There was a phenotypic discrepancy between reported prenatal and postnatal extracardiac findings in 40% (8/20). However, none of these additional, postnatal findings altered the genetic diagnosis. Herein, ES in prenatally diagnosed CHDs results in a comparably high diagnostic yield. There was a significant proportion of incidental findings and variants of unknown significance as well as potentially pathogenic variants in novel disease genes. Such findings can bedevil genetic counseling and decision making for pregnancy termination. Despite the small cohort size, our data serve as a first basis to evaluate the value of prenatal ES in CHD for further studies emerging in the near future.

11.
Eur J Hum Genet ; 27(6): 952-962, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30679814

RESUMO

Genome-wide association studies (GWAS) of quantitative electrocardiographic (ECG) traits in large consortia have identified more than 130 loci associated with QT interval, QRS duration, PR interval, and heart rate (RR interval). In the current study, we meta-analyzed genome-wide association results from 30,000 mostly Dutch samples on four ECG traits: PR interval, QRS duration, QT interval, and RR interval. SNP genotype data was imputed using the Genome of the Netherlands reference panel encompassing 19 million SNPs, including millions of rare SNPs (minor allele frequency < 5%). In addition to many known loci, we identified seven novel locus-trait associations: KCND3, NR3C1, and PLN for PR interval, KCNE1, SGIP1, and NFKB1 for QT interval, and ATP2A2 for QRS duration, of which six were successfully replicated. At these seven loci, we performed conditional analyses and annotated significant SNPs (in exons and regulatory regions), demonstrating involvement of cardiac-related pathways and regulation of nearby genes.

13.
Clin Epigenetics ; 10(1): 161, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587240

RESUMO

BACKGROUND: Most research into myocardial infarctions (MIs) have focused on preventative efforts. For survivors, the occurrence of an MI represents a major clinical event that can have long-lasting consequences. There has been little to no research into the molecular changes that can occur as a result of an incident MI. Here, we use three cohorts to identify epigenetic changes that are indicative of an incident MI and their association with gene expression and metabolomics. RESULTS: Using paired samples from the KORA cohort, we screened for DNA methylation loci (CpGs) whose change in methylation is potentially indicative of the occurrence of an incident MI between the baseline and follow-up exams. We used paired samples from the NAS cohort to identify 11 CpGs which were predictive in an independent cohort. After removing two CpGs associated with medication usage, we were left with an "epigenetic fingerprint" of MI composed of nine CpGs. We tested this fingerprint in the InCHIANTI cohort where it moderately discriminated incident MI occurrence (AUC = 0.61, P = 6.5 × 10-3). Returning to KORA, we associated the epigenetic fingerprint loci with cis-gene expression and integrated it into a gene expression-metabolomic network, which revealed links between the epigenetic fingerprint CpGs and branched chain amino acid (BCAA) metabolism. CONCLUSIONS: There are significant changes in DNA methylation after an incident MI. Nine of these CpGs show consistent changes in multiple cohorts, significantly discriminate MI in independent cohorts, and were independent of medication usage. Integration with gene expression and metabolomics data indicates a link between MI-associated epigenetic changes and BCAA metabolism.


Assuntos
Metilação de DNA , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Leucócitos/química , Infarto do Miocárdio/genética , Idoso , Ilhas de CpG , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Fatores de Risco
14.
Am J Hum Genet ; 103(5): 817-825, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401461

RESUMO

ADP-ribosylation is a reversible posttranslational modification used to regulate protein function. ADP-ribosyltransferases transfer ADP-ribose from NAD+ to the target protein, and ADP-ribosylhydrolases, such as ADPRHL2, reverse the reaction. We used exome sequencing to identify five different bi-allelic pathogenic ADPRHL2 variants in 12 individuals from 8 families affected by a neurodegenerative disorder manifesting in childhood or adolescence with key clinical features including developmental delay or regression, seizures, ataxia, and axonal (sensori-)motor neuropathy. ADPRHL2 was virtually absent in available affected individuals' fibroblasts, and cell viability was reduced upon hydrogen peroxide exposure, although it was rescued by expression of wild-type ADPRHL2 mRNA as well as treatment with a PARP1 inhibitor. Our findings suggest impaired protein ribosylation as another pathway that, if disturbed, causes neurodegenerative diseases.

15.
Sci Rep ; 8(1): 16719, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425284

RESUMO

In hyper-IgE syndromes (HIES), a group of primary immunodeficiencies clinically overlapping with atopic dermatitis, early diagnosis is crucial to initiate appropriate therapy and prevent irreversible complications. Identification of underlying gene defects such as in DOCK8 and STAT3 and corresponding molecular testing has improved diagnosis. Yet, in a child and her newborn sibling with HIES phenotype molecular diagnosis was misleading. Extensive analyses driven by the clinical phenotype identified an intronic homozygous DOCK8 variant c.4626 + 76 A > G creating a novel splice site as disease-causing. While the affected newborn carrying the homozygous variant had no expression of DOCK8 protein, in the index patient molecular diagnosis was compromised due to expression of altered and wildtype DOCK8 transcripts and DOCK8 protein as well as defective STAT3 signaling. Sanger sequencing of lymphocyte subsets revealed that somatic alterations and reversions revoked the predominance of the novel over the canonical splice site in the index patient explaining DOCK8 protein expression, whereas defective STAT3 responses in the index patient were explained by a T cell phenotype skewed towards central and effector memory T cells. Hence, somatic alterations and skewed immune cell phenotypes due to selective pressure may compromise molecular diagnosis and need to be considered with unexpected clinical and molecular findings.

16.
Eur Heart J ; 39(44): 3961-3969, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30169657

RESUMO

Aims: Sudden cardiac arrest (SCA) accounts for 10% of adult mortality in Western populations. We aim to identify potential loci associated with SCA and to identify risk factors causally associated with SCA. Methods and results: We carried out a large genome-wide association study (GWAS) for SCA (n = 3939 cases, 25 989 non-cases) to examine common variation genome-wide and in candidate arrhythmia genes. We also exploited Mendelian randomization (MR) methods using cross-trait multi-variant genetic risk score associations (GRSA) to assess causal relationships of 18 risk factors with SCA. No variants were associated with SCA at genome-wide significance, nor were common variants in candidate arrhythmia genes associated with SCA at nominal significance. Using cross-trait GRSA, we established genetic correlation between SCA and (i) coronary artery disease (CAD) and traditional CAD risk factors (blood pressure, lipids, and diabetes), (ii) height and BMI, and (iii) electrical instability traits (QT and atrial fibrillation), suggesting aetiologic roles for these traits in SCA risk. Conclusions: Our findings show that a comprehensive approach to the genetic architecture of SCA can shed light on the determinants of a complex life-threatening condition with multiple influencing factors in the general population. The results of this genetic analysis, both positive and negative findings, have implications for evaluating the genetic architecture of patients with a family history of SCA, and for efforts to prevent SCA in high-risk populations and the general community.

17.
Neuropediatrics ; 49(6): 401-404, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30199896

RESUMO

Many genetic and nongenetic causes for developmental delay in childhood could be identified. Often, however, the molecular basis cannot be elucidated. As next-generation sequencing is becoming more frequently available in a diagnostic context, an increasing number of genetic variations are found as causative in children with developmental delay.We performed trio exome sequencing in a girl with developmental delay and minor dysmorphological features. Using a filter for de novo variants, the heterozygous missense variant c.812A>T, p.(Glu217Val) was found in the candidate gene POU3F2 in our patient. POU3F2 plays an important role in neuronal differentiation and hormonal regulation. To date, it has not been associated with monogenic disorders. Studies on Pou3f2 knockout mice highlighted the importance of this protein in the development of the brain. Furthermore, microdeletions with an overlapping region including only POU3F2 and FBXL4 were linked to developmental delay in six unrelated families. Therefore, POU3F2 is a strong candidate gene for developmental delay, although functional assays proving this assumption still have to be done.

18.
Addiction ; 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209858

RESUMO

AIMS: To use the rs1229984 variant associated with alcohol consumption as an instrument for alcohol consumption to test the causality of the association of alcohol consumption with hay fever, asthma, allergic sensitization and serum total immunoglobulin (Ig)E. DESIGN: Observational and Mendelian randomization analyses using genetic variants as unbiased markers of exposure to estimate causal effects, subject to certain assumptions. SETTING: Europe. PARTICIPANTS: We included a total of 466 434 people aged 15-82 years from 17 population-based studies conducted from 1997 to 2015. MEASUREMENTS: The rs1229984 (ADH1B) was genotyped; alcohol consumption, hay fever and asthma were self-reported. Specific and total IgE were measured from serum samples. FINDINGS: Observational analyses showed that ever-drinking versus non-drinking, but not amount of alcohol intake, was positively associated with hay fever and inversely associated with asthma but not with allergic sensitization or serum total immunoglobulin (Ig)E. However, Mendelian randomization analyses did not suggest that the observational associations are causal. The causal odds ratio (OR) per genetically assessed unit of alcohol/week was an OR = 0.907 [95% confidence interval (CI) = 0.806, 1.019; P = 0.101] for hay fever, an OR = 0.897 (95% CI = 0.790, 1.019; P = 0.095) for asthma, an OR = 0.971 (95% CI =  0.804, 1.174; P = 0.763) for allergic sensitization and a 4.7% change (95% CI = -5.5%, 14.9%; P = 0.366) for total IgE. CONCLUSIONS: In observational analyses, ever-drinking versus not drinking was positively associated with hay fever and negatively associated with asthma. However, the Mendelian randomization results were not consistent with these associations being causal.

19.
Nat Commun ; 9(1): 3184, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093639

RESUMO

Ewing sarcoma (EWS) is a pediatric cancer characterized by the EWSR1-FLI1 fusion. We performed a genome-wide association study of 733 EWS cases and 1346 unaffected individuals of European ancestry. Our study replicates previously reported susceptibility loci at 1p36.22, 10q21.3 and 15q15.1, and identifies new loci at 6p25.1, 20p11.22 and 20p11.23. Effect estimates exhibit odds ratios in excess of 1.7, which is high for cancer GWAS, and striking in light of the rarity of EWS cases in familial cancer syndromes. Expression quantitative trait locus (eQTL) analyses identify candidate genes at 6p25.1 (RREB1) and 20p11.23 (KIZ). The 20p11.22 locus is near NKX2-2, a highly overexpressed gene in EWS. Interestingly, most loci reside near GGAA repeat sequences and may disrupt binding of the EWSR1-FLI1 fusion protein. The high locus to case discovery ratio from 733 EWS cases suggests a genetic architecture in which moderate risk SNPs constitute a significant fraction of risk.

20.
Orphanet J Rare Dis ; 13(1): 120, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30025539

RESUMO

BACKGROUND: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. RESULTS: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and severe developmental delays in four patients. More than 70% of the patients were able to perform the same activities of daily living when compared to peers. CONCLUSIONS: Our data show that riboflavin treatment improves complex I activity in the majority of patient-derived fibroblasts tested. This effect was also reported for most of the treated patients and is mirrored in the survival data. In the patient group with disease-onset below 1 year of age, we observed a statistically-significant better survival for patients treated with riboflavin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA