Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
J Cell Sci ; 135(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33912961


Septins colocalize with membrane sterol-rich regions and facilitate recruitment of cell wall synthases during wall remodeling. We show that null mutants missing an Aspergillus nidulans core septin present in hexamers and octamers (ΔaspAcdc11, ΔaspBcdc3 or ΔaspCcdc12) are sensitive to multiple cell wall-disturbing agents that activate the cell wall integrity MAPK pathway. The null mutant missing the octamer-exclusive core septin (ΔaspDcdc10) showed similar sensitivity, but only to a single cell wall-disturbing agent and the null mutant missing the noncore septin (ΔaspE) showed only very mild sensitivity to a different single agent. Core septin mutants showed changes in wall polysaccharide composition and chitin synthase localization. Mutants missing any of the five septins resisted ergosterol-disrupting agents. Hexamer mutants showed increased sensitivity to sphingolipid-disrupting agents. Core septins mislocalized after treatment with sphingolipid-disrupting agents, but not after ergosterol-disrupting agents. Our data suggest that the core septins are involved in cell wall integrity signaling, that all five septins are involved in monitoring ergosterol metabolism, that the hexamer septins are required for sphingolipid metabolism and that septins require sphingolipids to coordinate the cell wall integrity response.

Cells ; 9(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050028


Filamentous fungi typically grow as interconnected multinucleate syncytia that can be microscopic to many hectares in size. Mechanistic details and rules that govern the formation and function of these multinucleate syncytia are largely unexplored, including details on syncytial morphology and the regulatory controls of cellular and molecular processes. Recent discoveries have revealed various adaptations that enable fungal syncytia to accomplish coordinated behaviors, including cell growth, nuclear division, secretion, communication, and adaptation of the hyphal network for mixing nuclear and cytoplasmic organelles. In this review, we highlight recent studies using advanced technologies to define rules that govern organizing principles of hyphal and colony differentiation, including various aspects of nuclear and mitochondrial cooperation versus competition. We place these findings into context with previous foundational literature and present still unanswered questions on mechanistic aspects, function, and morphological diversity of fungal syncytia across the fungal kingdom.

Cytoskeleton (Hoboken) ; 76(1): 33-44, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171672


Septins are highly conserved guanosine triphosphate (GTP)-binding proteins that are a component of the cytoskeletal systems of virtually all eukaryotes (except higher plants). Septins play important roles in a multitude of cellular processes, including cytokinesis, establishment of cell polarity, and cellular partitioning. The ease of genetic screens and a fully sequenced genome have made Saccharomyces cerevisiae one of the most extensively studied and well-annotated model organisms in eukaryotic biology. Here, we present a synopsis of the known point mutations in the seven S. cerevisiae septin genes: CDC3, CDC10, CDC11, CDC12, SHS1, SPR3, and SPR28. We map these mutations onto septin protein structures, highlighting important conserved motifs, and relating the functional consequences of mutations in each domain.

Septinas/genética , Mutação/genética , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
PLoS One ; 13(8): e0201828, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114268


Histone H1 is an evolutionarily conserved linker histone protein that functions in arranging and stabilizing chromatin structure and is frequently fused to a fluorescent protein to track nuclei in live cells. In time-lapse analyses, we observed stochastic exchange of photoactivated Dendra2-histone H1 protein between nuclei within the same cellular compartment. We also observed exchange of histones between genetically distinct nuclei in a heterokaryon derived from fusion of strains carrying histone H1-RFP or H1-GFP. Subsequent analysis of the resulting uninucleate conidia containing both RFP- and GFP-labeled histone H1 proteins showed only parental genotypes, ruling out genetic recombination and diploidization. These data together suggest that the linker histone H1 protein can diffuse between non-daughter nuclei in the filamentous fungus Aspergillus nidulans.

Aspergillus nidulans/metabolismo , Núcleo Celular/metabolismo , Histonas/metabolismo , Aspergillus nidulans/citologia , Aspergillus nidulans/crescimento & desenvolvimento , Difusão , Esporos Fúngicos/citologia , Esporos Fúngicos/metabolismo , Processos Estocásticos