Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(16): 3921-3924, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388775

RESUMO

We reveal the crucial role played by the frequency dependence of the nonlinear parameter on the evolution of femtosecond solitons inside photonic crystal fibers (PCFs). We show that the conventional approach based on the self-steepening effect is not appropriate when such fibers have two zero-dispersion wavelengths, and several higher-order nonlinear terms must be included for realistic modeling of the nonlinear phenomena in PCFs. These terms affect not only the Raman-induced wavelength shift of a soliton but also impact its shedding of dispersive radiation.

2.
Sci Rep ; 10(1): 8849, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483201

RESUMO

New resonant emission of dispersive waves by oscillating solitary structures in optical fiber cavities is considered analytically and numerically. The pulse propagation is described in the framework of the Lugiato-Lefever equation when a Hopf-bifurcation can result in the formation of oscillating dissipative solitons. The resonance condition for the radiation of the dissipative oscillating solitons is derived and it is demonstrated that the predicted resonances match the spectral lines observed in numerical simulations perfectly. The complex recoil of the radiation on the soliton dynamics is discussed. The reported effect can have importance for the generation of frequency combs in nonlinear microring resonators.

3.
Opt Express ; 27(26): 38326-38336, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878601

RESUMO

The realization of optical interconnects between multimode (MM) optical fibers and waveguides based on a self-writing process in photopolymer media represents an efficient approach for fast and easy-to-implement connection of light-guiding elements. When light propagates through photopolymer media, it modulates the material properties of the media and confines the spreading of the light beam to create a waveguide along the beam propagation direction. This self-writing process can be realized with a single photopolymer medium and is also suited to connect optical fibers or waveguides with active elements such as light sources and detectors. Numerical simulations of the underlying light-induced polymerization process is carried out by using a diffusion based material model which takes account both monomer diffusion and its conversion to polymer chains in regions exposed to light fields. In this work experimental results obtained from a one-polymer approach are validated with theoretical predictions from the diffusion model. The study involved the demonstration of temporal dynamics and transmittance from self-written waveguide (SWW) couplers during the self-writing process. The measured attenuation coefficient from experiment αexperiment = (8.43 ± 0.3) × 10-5 dB/µm showed good agreement with the theoretically predicted attenuation coefficient αsimulation = 7.93 × 10-5 dB/µm, thus demonstrating a successful application of the diffusion model to epoxy based acrylate SWWs. For comparison, attenuation measurements between optical fibers with SWWs as interconnects and one without SWW, i.e. with an air gap in between, were performed. The obtained results reveal that the theoretical approach correctly describes the waveguide formation process so that in the next step the studies can be extended towards including further relevant parameters such as temperature.

4.
Sensors (Basel) ; 19(9)2019 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-31083637

RESUMO

In this article, we present a simple and intuitive approach to create a handheld optoacoustic setup for near field measurements. A single piezoelectric transducer glued in between two sheets of polymethyl methacrylate (PMMA) facilitates nearfield depth profiling of layered media. The detector electrodes are made of indium tin oxide (ITO) which is both electrically conducting as well as optically transparent, enabling an on-axis illumination through the detector. By mapping the active detector area, we show that it matches the design form precisely. We also present a straightforward approach to determine the instrument response function, which allows to obtain the original pressure profile arriving at the detector. To demonstrate the validity of this approach, the measurement on a simple test sample is deconvolved with the instrument response function and compared to simulation results. Except for the sputter instrumentation, all required materials and instruments as well as the tools needed to create such a setup are available to standard scientific laboratories.

5.
Phys Rev Lett ; 123(24): 243905, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922846

RESUMO

We demonstrate a peculiar mechanism for the formation of bound states of light pulses of substantially different optical frequencies, in which pulses are strongly bound across a vast frequency gap. This is enabled by a propagation constant with two separate regions of anomalous dispersion. The resulting soliton compound exhibits moleculelike binding energy, vibration, and radiation and can be understood as a mutual trapping providing a striking analogy to quantum mechanics. The phenomenon constitutes an intriguing case of two light waves mutually affecting and controlling each other.

6.
Entropy (Basel) ; 21(2)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33266908

RESUMO

Spin glasses are prototypical random systems modelling magnetic alloys. One important way to investigate spin glass models is to study domain walls. For two dimensions, this can be algorithmically understood as the calculation of a shortest path, which allows for negative distances or weights. This led to the creation of the negative weight percolation (NWP) model, which is presented here along with all necessary basics from spin glasses, graph theory and corresponding algorithms. The algorithmic approach involves a mapping to the classical matching problem for graphs. In addition, a summary of results is given, which were obtained during the past decade. This includes the study of percolation transitions in dimension from d = 2 up to and beyond the upper critical dimension d u = 6 , also for random graphs. It is shown that NWP is in a different universality class than standard percolation. Furthermore, the question of whether NWP exhibits properties of Stochastic-Loewner Evolution is addressed and recent results for directed NWP are presented.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 1): 041106, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22181086

RESUMO

We investigate both analytically and numerically the ensemble of minimum-weight loops in the negative-weight percolation model on random graphs with fixed connectivity and bimodal weight distribution. This allows us to study the mean-field behavior of this model. The analytical study is based on a conjectured equivalence with the problem of self-avoiding walks in a random medium. The numerical study is based on a mapping to a standard minimum-weight matching problem for which fast algorithms exist. Both approaches yield results that are in agreement on the location of the phase transition, on the value of critical exponents, and on the absence of any sizable indications of a glass phase. By these results, the previously conjectured upper critical dimension of d(u)=6 is confirmed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...