Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Lipids ; 55(2): 185-191, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32045496

RESUMO

Hepatocellular carcinoma and cholangiocarcinoma are the most common primary malignant liver tumors. Since the liver plays a key role in lipid metabolism, the study of serum phospholipid (PL) profiles may provide a better understanding of alterations in hepatic lipid metabolism. In this study, we used a high-resolution HILIC-LC-MS lipidomic approach to establish the serum phospholipidome profile of patients with liver cancer before (T0) and after tumor resection (T1) and a control group (CT) of healthy individuals. After the analysis of PL profiles, we observed that the phospholipidome of patients with liver cancer was significantly modified after the tumor resection procedure. We observed an upregulation of some phosphatidylcholine (PtdCho) species, namely, PtdCho(36:6), PtdCho(42:6), PtdCho(38:5), PtdCho(36:5), PtdCho(38:6) and choline plasmalogens (PlsCho), and/or 1-O-alkyl-2-acyl-glycerophosphocholine (PakCho) in patients with liver cancer at T0 compared to the CT group, and a downregulation after tumor resection (T1) when compared to T0. These results show that LC-MS can detect different serum PL profiles in patients with liver cancer, before and after tumor resection, by defining a specific PL fingerprint that was used to determine the effect of tumor and tumor resection on lipid metabolism.

2.
Biomolecules ; 10(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936373

RESUMO

The aquaculture of macroalgae for human consumption and other high-end applications is experiencing unprecedented development in European countries, with the brown algae Saccharina latissima being the flag species. However, environmental conditions in open sea culture sites are often unique, which may impact the biochemical composition of cultured macroalgae. The present study compared the elemental compositions (CHNS), fatty acid profiles, and lipidomes of S. latissima originating from three distinct locations (France, Norway, and the United Kingdom). Significant differences were found in the elemental composition, with Norwegian samples displaying twice the lipid content of the others, and significantly less protein (2.6%, while French and UK samples contained 6.3% and 9.1%, respectively). The fatty acid profiles also differed considerably, with UK samples displaying a lower content of n-3 fatty acids (21.6%), resulting in a higher n-6/n-3 ratio. Regarding the lipidomic profile, samples from France were enriched in lyso lipids, while those from Norway displayed a particular signature of phosphatidylglycerol, phosphatidylinositol, and phosphatidylcholine. Samples from the UK featured higher levels of phosphatidylethanolamine and, in general, a lower content of galactolipids. These differences highlight the influence of site-specific environmental conditions in the shaping of macroalgae biochemical phenotypes and nutritional value. It is also important to highlight that differences recorded in the lipidome of S. latissima make it possible to pinpoint specific lipid species that are likely to represent origin biomarkers. This finding is relevant for future applications in the field of geographic origin traceability and food control.

3.
Autophagy ; 16(2): 313-333, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30990357

RESUMO

Given the relatively long life of stem cells (SCs), efficient mechanisms of quality control to balance cell survival and resistance to external and internal stress are required. Our objective was to test the relevance of cell quality control mechanisms for SCs maintenance, differentiation and resistance to cell death. We compared cell quality control in P19 stem cells (P19SCs) before and after differentiation (P19dCs). Differentiation of P19SCs resulted in alterations in parameters involved in cell survival and protein homeostasis, including the redox system, cardiolipin and lipid profiles, unfolded protein response, ubiquitin-proteasome and lysosomal systems, and signaling pathways controlling cell growth. In addition, P19SCs pluripotency was correlated with stronger antioxidant protection, modulation of apoptosis, and activation of macroautophagy, which all contributed to preserve SCs quality by increasing the threshold for cell death activation. Furthermore, our findings identify critical roles for the PI3K-AKT-MTOR pathway, as well as autophagic flux and apoptosis regulation in the maintenance of P19SCs pluripotency and differentiation potential.Abbreviations: 3-MA: 3-methyladenine; AKT/protein kinase B: thymoma viral proto-oncogene; AKT1: thymoma viral proto-oncogene 1; ATG: AuTophaGy-related; ATF6: activating transcription factor 6; BAX: BCL2-associated X protein; BBC3/PUMA: BCL2 binding component 3; BCL2: B cell leukemia/lymphoma 2; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CASP3: caspase 3; CASP8: caspase 8; CASP9: caspase 9; CL: cardiolipin; CTSB: cathepsin B; CTSD: cathepsin D; DDIT3/CHOP: DNA-damage inducible transcript 3; DNM1L/DRP1: dynamin 1-like; DRAM1: DNA-damage regulated autophagy modulator 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2, subunit alpha; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; ESCs: embryonic stem cells; KRT8/TROMA-1: cytokeratin 8; LAMP2A: lysosomal-associated membrane protein 2A; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NANOG: Nanog homeobox; NAO: 10-N-nonyl acridine orange; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; OPA1: OPA1, mitochondrial dynamin like GTPase; P19dCs: P19 differentiated cells; P19SCs: P19 stem cells; POU5F1/OCT4: POU domain, class 5, transcription factor 1; PtdIns3K: phosphatidylinositol 3-kinase; RA: retinoic acid; ROS: reactive oxygen species; RPS6KB1/p70S6K: ribosomal protein S6 kinase, polypeptide 1; SCs: stem cells; SOD: superoxide dismutase; SHC1-1/p66SHC: src homology 2 domain-containing transforming protein C1, 66 kDa isoform; SOX2: SRY (sex determining region Y)-box 2; SQSTM1/p62: sequestosome 1; SPTAN1/αII-spectrin: spectrin alpha, non-erythrocytic 1; TOMM20: translocase of outer mitochondrial membrane 20; TRP53/p53: transformation related protein 53; TUBB3/betaIII-tubulin: tubulin, beta 3 class III; UPR: unfolded protein response; UPS: ubiquitin-proteasome system.

4.
Med Image Anal ; 59: 101561, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31671320

RESUMO

Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is challenging due to the scarcity of medical professionals able to screen a growing global diabetic population at risk for DR. Computer-aided disease diagnosis in retinal image analysis could provide a sustainable approach for such large-scale screening effort. The recent scientific advances in computing capacity and machine learning approaches provide an avenue for biomedical scientists to reach this goal. Aiming to advance the state-of-the-art in automatic DR diagnosis, a grand challenge on "Diabetic Retinopathy - Segmentation and Grading" was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2018). In this paper, we report the set-up and results of this challenge that is primarily based on Indian Diabetic Retinopathy Image Dataset (IDRiD). There were three principal sub-challenges: lesion segmentation, disease severity grading, and localization of retinal landmarks and segmentation. These multiple tasks in this challenge allow to test the generalizability of algorithms, and this is what makes it different from existing ones. It received a positive response from the scientific community with 148 submissions from 495 registrations effectively entered in this challenge. This paper outlines the challenge, its organization, the dataset used, evaluation methods and results of top-performing participating solutions. The top-performing approaches utilized a blend of clinical information, data augmentation, and an ensemble of models. These findings have the potential to enable new developments in retinal image analysis and image-based DR screening in particular.

5.
J Steroid Biochem Mol Biol ; 198: 105558, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31783151

RESUMO

Liver X receptor (LXR) agonists have the potential to alleviate obesity related diseases, particularly atherosclerosis. However, LXRs are transcriptional regulators that induce de novo lipogenesis and lipid accumulation in hepatocytes which represents a serious adverse effect. In this work, we sought to characterize the LXR agonist GW3965 effects on fatty acid (FA) and phospholipid (PL) remodelling and the correlation with gene expression in order to better understand the underlying effects leading to hepatic pathology upon LXR activation. Human primary hepatocytes treated for 48 h with GW3965 were analysed for changes in lipid metabolism gene expression by qPCR, variations in the FA profile was evaluated by GC-FID and in PL profiles using thin layer chromatography, ESI-MS and MS/MS analysis. Changes in cell membrane biochemical properties were studied using bilayer models generated with CHARMM-GUI. ELOLV6 and SCD1 mRNA increase was consistent with higher C16:1 and C18:1n9 at the expense of C16:0 and C18:0. The reduction of C18:2n6 and increase in C20:2n6 was in agreement with ELOVL5 upregulation. Phosphatydilethanolamine (PE) levels tended to decrease and phosphatidylinositol to increase; although differences did not reach significance, they correlated with changes in AGXT2L1, CDS1 and LPIN1 mRNA levels that were increased. The overall effect of GW3965 on PEs molecular profiles was an increase of long-chain polyunsaturated FA chains and a decrease of C16/C18 saturated and monounsaturated FAs chains. Additionally, PC (32:1) and PC (34:2) were decreased, and PC (36:1) and PC (34:1) were increased. AGXT2L1 is an enzyme with strict substrate specificity for phosphoethanolamine, which is converted into ammonia in GW3965-treated hepatocytes and could explain the PE reduction. In summary, LXR activation by GW3965 targets PE biosynthesis and FA elongation/desaturation, which tends to decrease PE in relation to total PL levels, and remodelling of PC and PE molecular species. We identified the human AGXT2L1 gene as induced by LXR activation by both synthetic and endogenous agonist treatment. The increase in acetaldehyde-induced oxidative stress, and in the lipid species identified have the potential to enhance the inflammatory process and impair membrane function. Future studies should focus on inhibition of AGXT2L1 activity with the aim of reverting the steatosis induced by LXR activation.

6.
Hum Mol Genet ; 28(21): 3664-3679, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518391

RESUMO

A great deal of evidence revealing that lipid metabolism is drastically altered during tumorigenesis has been accumulated. In this work, glucosylceramide synthase (GCS) was targeted, using RNA interference technology (siRNAs), in U87 and DBTRG human glioblastoma (GBM) cells, as in both cell types GCS showed to be overexpressed with respect to normal human astrocytes. The efficacy of a combined therapy to tackle GBM, allying GCS silencing to the new generation chemotherapeutics sunitinib and axitinib, or to the alkylating drugs etoposide and temozolomide, is evaluated here for the first time. With this purpose, studies addressing GBM cell viability and proliferation, cell cycle and apoptosis were performed, which revealed that combination of GCS silencing with axitinib treatment represents a promising therapeutic approach. The reduction of cell viability induced by this combined therapy is proposed to be mediated by excessive production of reactive oxygen species. This work, identifying GCS as a key molecular target to increase GBM susceptibility to a new generation chemotherapeutic, opens windows to the development of innovative strategies to halt GBM recurrence after surgical resection.

7.
Sci Rep ; 9(1): 13423, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530825

RESUMO

Cancer associated body wasting is the cause of physical disability, reduced tolerance to anticancer therapy and reduced survival of cancer patients and, similarly to cancer, its incidence is increasing. There is no cure for this clinical condition, and the pathophysiological process involved is largely unknown. Exercise training appears as the gold standard non-pharmacological therapy for the management of this wasting syndrome. Herein we used a lipidomics approach based on liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS) to study the effect of exercise in the modulation of phospholipids profile of mitochondria isolated from gastrocnemius muscle of a pre-clinical model of urothelial carcinoma-related body wasting (BBN induced), submitted to 13 weeks of treadmill exercise after diagnosis. Multivariate analysis showed a close relationship between the BBN exercise group and both control groups (control sedentary and control exercise), while the BBN sedentary group was significantly separated from the control groups and the BBN exercise group. Univariate statistical analysis revealed differences mainly in phosphatidylserine (PS) and cardiolipin (CL), although some differences were also observed in phosphatidylinositol (PI, LPI) and phosphatidylcholine (PC) phospholipids. PS with shorter fatty acyl chains were up-regulated in the BBN sedentary group, while the other species of PS with longer FA and a higher degree of unsaturation were down-regulated, but the BBN exercise group was mostly similar to control groups. Remarkably, exercise training prevented these alterations and had a positive impact on the ability of mitochondria to produce ATP, restoring the healthy phospholipid profile. The remodelling of mitochondria phospholipid profile in rats with urothelial carcinoma allowed confirming the importance of the lipid metabolism in mitochondria dysfunction in cancer-induced skeletal muscle remodelling. The regulation of phospholipid biosynthetic pathways observed in the BBN exercise group supported the current perspective that exercise is an adequate therapeutic approach for the management of cancer-related muscle remodeling.

8.
Mar Drugs ; 17(9)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540326

RESUMO

Palmaria palmata is an edible red macroalga widely used for human consumption and valued for its high protein value. Despite its low total lipid content, it is rich in eicosapentaenoic acid (EPA). This seaweed has been scarcely explored with regard to its lipid composition. The polar lipids of seaweeds are nowadays recognized as important phytochemicals contributing to their add value valorization and providing support for claims of potential health benefits. The present study aimed to disclose the polar lipid profile of P. palmata, farmed in an integrated multi-trophic aquaculture (IMTA) through modern lipidomic approaches using high-resolution LC-MS and MS/MS and to screen for the antioxidant properties of this red macroalga. A total of 143 molecular species of lipids were identified, belonging to several classes of polar lipids, such as glycolipids, phospholipids, and betaine lipids. It is noteworthy that the most abundant lipid species in each class were esterified with eicosapentaenoic acid (EPA), accounting for more than 50% of the lipid content. The polar lipid extract rich in EPA showed antioxidant activity with an inhibition concentration (IC) of IC30 = 171 ± 19.8 µg/mL for α,α-diphenyl-ß-picrylhydrazyl radical (DPPH●) and IC50 = 26.2 ± 0.1 µg/mL for 2,20-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS●+). Overall, this study highlights that P. palmata farmed in an IMTA framework can be a sustainable source of beneficial lipids with antioxidant activity. Moreover, this red macroalga can be exploited for future applications as a source of lipids rich in EPA for food and feed, nutraceuticals, and cosmetics.


Assuntos
Ácido Eicosapentaenoico/análise , Depuradores de Radicais Livres/farmacocinética , Extratos Vegetais/farmacologia , Rodófitas/química , Alga Marinha/química , Aquicultura , Cromatografia Líquida de Alta Pressão , Cosméticos , Suplementos Nutricionais , Depuradores de Radicais Livres/análise , Depuradores de Radicais Livres/química , Alimento Funcional , Concentração Inibidora 50 , Extratos Vegetais/análise , Extratos Vegetais/química , Espectrometria de Massas em Tandem
9.
Molecules ; 24(14)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337054

RESUMO

Olives (Olea europaea L.) are classic ingredients in the Mediterranean diet with well-known health benefits, but their lipid composition has not been fully addressed. In this work, we characterised triacylglycerol (TAG) and polar lipid profiles of the olive pulp while using a complementary methodological approach that was based on solid-phase extraction to recover the neutral lipid (NL) and the polar lipid-rich fractions. The TAG profile was analysed in the NL-fraction by C30 reversed-phase liquid chromatography (LC) and the polar lipid profile by normal-phase hydrophilic interaction liquid chromatography (HILIC), with both being coupled to electrospray ionization-mass spectrometry (ESI-MS) and ESI-MS/MS. This approach identified 71 TAG ions that were attributed to more than 350 molecular species, with fatty acyl chain lengths from C11:0 to C26:0, including different polyunsaturated acyl chains. The polar lipids included 107 molecular species that belonged to 11 lipid classes that comprised phospholipids, glyceroglycolipids, glycosphingolipids, and betaine lipids. In addition to polyunsaturated fatty acids, some of the phospholipids, glycolipids, and glycosphingolipids that were identified in the olive pulp have been described as biologically active molecules. Lipidomic phenotyping of the olive pulp has led to the discovery of compounds that will allow for a better assessment of its nutritional value and new applications of bioactive lipid components in this functional food.


Assuntos
Frutas/metabolismo , Alimento Funcional , Metabolismo dos Lipídeos , Lipídeos , Olea/metabolismo , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa , Frutas/química , Lipídeos/química , Estrutura Molecular , Olea/química , Portugal , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Triglicerídeos/química , Triglicerídeos/metabolismo
10.
J Proteome Res ; 18(8): 3174-3183, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31290314

RESUMO

Obesity is a public health problem and a risk factor for pathologies such type 2 diabetes mellitus, cardiovascular diseases, and nonalcoholic fatty liver disease. Given these clinical implications, there is a growing interest to understand the pathophysiological mechanism of obesity. Changes in lipid metabolism have been associated with obesity and obesity-related complications. However, changes in the lipid profile of obese children have been overlooked. In the present work, we analyzed the serum phospholipidome of overweight and obese children by HILIC-MS/MS and GC-MS. Using this approach, we have identified 165 lipid species belonging to the classes PC, PE, PS, PG, PI, LPC, and SM. The phospholipidome of overweight (OW) and obese (OB) children was significantly different from normal-weight children (control). Main differences were observed in the PI class that was less abundant in OW and OB children and some PS, PE, SM, and PC lipid species are upregulated in obese and overweight children. Although further studies are needed to clarify some association between phospholipid alterations and metabolic changes, our results highlight the alteration that occurs in the serum phospholipid profile in obesity in children.

11.
Free Radic Biol Med ; 144: 156-166, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31212065

RESUMO

Oxidized LDL (oxLDL) has been shown to play a crucial role in the onset and development of cardiovascular disorders. The study of oxLDL, as an initiator of inflammatory cascades, led to the discovery of a variety of oxidized phospholipids (oxPLs) responsible for pro-inflammatory actions. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) is frequently used by the scientific community as a representative oxPL mixture to study the biological effects of oxidized lipids, due to the high abundance of PAPC in human tissues and the biological activities of oxidized arachidonic acids derivatives. Most studies focusing on oxPAPC effects rely on in-house prepared mixtures of oxidized species obtained by exposing PAPC to air oxidation. Here, we described a multi-laboratory evaluation of the compounds in oxPAPC by LC-MS/MS, focusing on the identification and relative quantification of the lipid peroxidation products (LPPs) formed. PAPC was air-oxidized in four laboratories using the same protocol for 0, 48, and 72 h. It was possible to identify 55 different LPPs with unique elemental composition and characterize different structural isomeric species within these. The study showed good intra-sample reproducibility and similar qualitative patterns of oxidation, as the most abundant LPPs were essentially the same between the four laboratories. However, there were substantial differences in the extent of oxidation, i.e. the amount of LPPs relative to unmodified PAPC, at specific time points. This shows the importance of characterizing air-oxidized PAPC preparations before using them for testing biological effects of oxidized lipids, and may explain some variability of effects reported in the literature.

12.
J Pharm Biomed Anal ; 174: 386-395, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31207360

RESUMO

Autoimmune diseases (AID) are a heterogeneous group of disorders that have in common a chronic inflammation and dysregulation of the immune system. Systemic lupus erythematosus (SLE) is one of the most frequent systemic autoimmune diseases characterized by autoimmune phenomena in multiple organs. The tests used for evolution and prognosis assessment are either non-specific or non-sensitive, impairing an adequate therapeutics. To face this drawback, lipidomics is being used to provide more knowledge and insights regarding autoimmune disorders. Through lipidomic approaches using MS, it is possible to identify and quantify the level of lipid molecular species in the biological system and this could be useful to identify biomarkers and to better understand the pathophysiology of autoimmune diseases. There are some evidence that lipids and oxidized lipids can play a key role in AID pathogenesis. Although this field has been scarcely explored, there are some studies that reported variations on the lipid profile at a molecular level using lipidomic approaches based on MS in SLE. The results gathered herein showed changes mainly in the level of phospholipids, with decrease of some plasmenyl lipids, fatty acids, with reduction of PUFA, and sphingolipids, with changes in fatty acyl chain composition. These changes may be the result of lipids` modifications due to oxidation and increase of ROS. Some alterations can be associated with changes in membrane of lymphocytes and with the deregulation of the immune system. Thus, exploring the knowledge from modern lipidomic approaches in the study of the role of lipids and oxidized lipids, in oxidative stress and in inflammatory diseases, could contribute for the identification of new lipid biomarkers. Lipid biomarkers are promising tools to prognosis and treatment monitoring, tailored for the best therapeutic response and highest safety to ensure better patient care and to be used for personalized medicine.


Assuntos
Doenças Autoimunes/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Biomarcadores/química , Progressão da Doença , Humanos , Inflamação , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Lipídeos/química , Linfócitos/química , Oxirredução , Estresse Oxidativo , Oxigênio/química , Medicina de Precisão , Prognóstico
13.
Free Radic Biol Med ; 144: 192-202, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31199965

RESUMO

Nitrated phospholipids have been recently identified in biological systems and showed to display anti-oxidant and anti-inflammatory potential in models of inflammation in vitro. Here, we have explored the effects of nitrated 1-palmitoyl-2-oleyl-phosphatidyl choline (NO2-POPC) in cellular models. We have observed that NO2-POPC, but not POPC, induces cellular changes consisting in cytoskeletal rearrangement and cell shrinking, and ultimately, loss of cell adhesion or impaired cell attachment. NO2-POPC releases NO in vitro and induces accumulation of NO in cells. Nevertheless, the effects of NO2-POPC are not superimposable with those of NO donors, which points to distinctive mechanisms of action. Notably, they show a stronger parallelism, although not complete overlap, with the effects of nitrated fatty acids. Interestingly, redistribution of vimentin by NO2-POPC is attenuated in a C328S mutant, thus indicating that this residue may be a target for direct or indirect modification in NO2-POPC-treated cells. Additionally, NO2-POPC interacts with several typical lipoxidation targets in vitro, including vimentin and PPARγ constructs, likely through cysteine residues. Therefore, nitrated phospholipids emerge as potential novel electrophilic lipid mediators with selective actions.

14.
Mar Drugs ; 17(6)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167455

RESUMO

Fucus vesiculosus is an edible brown macroalga, with health benefits associated with its consumption and also a source of bioactive molecules. It is acknowledged that the biochemical composition of macroalgae changes when exposed to different environmental conditions occurring on different habitats, such as the water temperature, and light intensity. In the present study, the polar lipidome of Fucus vesiculosus was characterized for the first time using modern high-resolution HILIC-MS, and MS/MS approaches, to evaluate the phenotypic variability in two seasons of the year, e.g., winter and spring. A total of 187 molecular species were identified over eighteen classes of glycolipids, phospholipids and betaine lipids. Principal component analysis (PCA) multivariate statistical analysis and cluster analysis of polar lipid classes, polar lipid species and total fatty acids (FA) datasets, showed clustering according to the seasonal groups. While the lipid profile of Fucus vesiculosus harvested in the winter and spring yielded the same molecular species, the relative abundance of these species was significantly different. In the winter, changes were mainly due to the increased relative abundance of some molecular species of glycolipids and phospholipids, bearing octadeca(poly)enoic (18:3, 18:4) and eicosa(poly)enoic (20:4, 20:5) FA and betaine lipids species with short saturated FA (14:0) and polyunsaturated FA (PUFA). Importantly, glycolipids with n-3 PUFA and sulfolipids, have been reported to have important biological activities and therapeutic value. Overall, Fucus vesiculosus is a promising source of bioactive compounds that can be used as functional food or ingredients for human nutrition, feed, pharma, and cosmetic formulations. In this study, samples harvested in the winter season maximized yields of these bioactive components, when compared with samples harvested in the spring.


Assuntos
Fucus/química , Lipídeos/química , Estações do Ano , Fucus/metabolismo , Lipídeos/análise , Espectrometria de Massas , Compostos Fitoquímicos/química
15.
Free Radic Biol Med ; 144: 183-191, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31095999

RESUMO

Cardiolipins (CL) are anionic dimeric phospholipids bearing four fatty acids, found in inner mitochondrial membrane as structural components and are involved in several processes as oxidative phosphorylation or apoptotic signalling. As other phospholipids, CL can be modified by reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can modulate various cellular functions. Modifications of CL by RNS remain largely unstudied although other nitrated lipids are emerging as bioactive molecules. In this work, we developed a C30-LC-HRMS/MS methodology to identify the nitrated and nitroxidized tetralinoleoyl-cardiolipin (TLCL), using a biomimetic model of nitration, and to disclose specific fragmentation pathways under HCD MS/MS. Using this lipidomics approach, we were able to separate and identify nitro, nitroso, nitronitroso, and nitroxidized TLCL derivatives, comprising 11 different nitrated compounds. These products were identified using accurate mass measurements and the fragmentation pattern acquired in higher-energy collision dissociation (HCD)-tandem MS/MS experiments. These spectra showed classifying fragmentation pathways, yielding phosphatidic acid (PA-), lysophosphatidic acid (LPA-), and carboxylate fragment ions with the modifying moiety. Remarkably, the typical neutral losses associated with the added moieties were not observed. In conclusion, this work has developed a new method for the identification of nitroso, nitrated and nitroxidized cardiolipin products by using a C30LC-MS platform method, potentially allowing their detection in biological samples.

16.
Redox Biol ; 23: 101106, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30718106

RESUMO

Nitro-fatty acids (NO2-FA) undergo reversible Michael adduction reactions with cysteine and histidine residues leading to the post-translational modification (PTM) of proteins. This electrophilic character of NO2-FA is strictly related to their biological roles. The NO2-FA-induced PTM of signaling proteins can lead to modifications in protein structure, function, and subcellular localization. The nitro lipid-protein adducts trigger a series of downstream signaling events that culminates with anti-inflammatory, anti-hypertensive, and cytoprotective effects mediated by NO2-FA. These lipoxidation adducts have been detected and characterized both in model systems and in biological samples by using mass spectrometry (MS)-based approaches. These MS approaches allow to unequivocally identify the adduct together with the targeted residue of modification. The identification of the modified proteins allows inferring on the possible impact of the NO2-FA-induced modification. This review will focus on MS-based approaches as valuable tools to identify NO2-FA-protein adducts and to unveil the biological effect of this lipoxidation adducts.

17.
J Colloid Interface Sci ; 533: 678-691, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30196112

RESUMO

Sugarcane bagasse cellulose mixed ester succinate phthalate (SBSPh) was synthesized by a novel one-pot reaction method. The effects of temperature, time and mole fraction of succinic anhydride (χSA) on the responses weight gain (wg), number of carboxylic acid groups (nT,COOH), and adsorption capacity (q) of Co2+ and Ni2+ were evaluated by a 23 experimental design. The chemical structure of the material was elucidated by Fourier transform infrared, 13C Multiple Cross-Polarization solid-state NMR spectroscopy and 1H NMR relaxometry. The best SBSPh synthesis condition (100 °C, 11 h, χSA of 0.2) yielded a wg of 59.1%, nT,COOH of 3.41 mmol g-1, and values of qCo2+ and qNi2+ of 0.348 and 0.346 mmol g-1, respectively. The Sips model fitted better the equilibrium data, and the maximum adsorption capacities (pH 5.75 and 25 °C) estimated by this model were 0.62 and 0.53 mmol g-1 for Co2+ and Ni2+, respectively. The ΔadsH° values estimated by isothermal titration calorimetry were 8.43 and 7.79 kJ mol-1 for Co2+ and Ni2+, respectively. Desorption and re-adsorption efficiencies were evaluated by a 22 experimental design, which showed that SBSPh adsorbent can be recovered and reused without significant loss of adsorption capacity.


Assuntos
Celulose/química , Cobalto/isolamento & purificação , Ésteres/química , Níquel/isolamento & purificação , Saccharum/química , Cobalto/química , Estrutura Molecular , Níquel/química , Tamanho da Partícula , Ácidos Ftálicos/química , Soluções , Succinatos/química , Propriedades de Superfície , Água/química
18.
Arch Biochem Biophys ; 660: 64-71, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30315768

RESUMO

Aminophospholipids (APL), phosphatidylethanolamine (PE) and phosphatidylserine (PS), can be oxidized upon oxidative stress. Oxidized PE and PS have been detected in clinical samples of different pathologies and may act as modulators of the inflammatory response. However, few studies have focused on the effects of oxidized APL (ox-APL) esterified with arachidonic acid, even though a considerable number of studies have assessed the modulation of the immune system by oxidized 1-palmitoyl-2-arachidonoyl-sn-3-glycerophosphocholine (OxPAPC). In the present study, we have used flow cytometry to evaluate the ability of oxidized PAPE (OxPAPE) and PAPS (OxPAPS) to promote or suppress an inflammatory phenotype on monocytes subsets and myeloid dendritic cells (mDCs). The results indicate that OxPAPE increases the frequency of all monocyte subpopulations expressing TNF-α, which promotes an inflammatory response. However, immune cell stimulation with OxPAPE in the presence of LPS results in a decrease of TNF-α expressed by classical monocytes. Incubation with OxPAPS and LPS induces a decrease in TNF-α produced by monocytes, and a significant decrease in IL-1ß expressed by monocytes and mDCs, indicating that OxPAPS reduces the LPS-induced pro-inflammatory expression in these populations. These results show the importance of OxPAPE and OxPAPS as modulators of the inflammatory response and demonstrate their possible contribution to the onset and resolution of human diseases related to oxidative stress and inflammation.


Assuntos
Fosfolipídeos/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/imunologia , Monócitos/metabolismo , Oxirredução , Fosfolipídeos/sangue
19.
Environ Technol ; : 1-11, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257615

RESUMO

Vegetable oils (VOs) can be used as plasticizers or as biodegrading additives for commercial polymers. According to the literature, the use of concentrations higher than 5% of oils added to polymers or their mixtures indicated loss of mechanical properties on the final product. However, VOs can be used as a compatibilizer for the mixture of synthetic polymers with biopolymers (PM) under concentrations higher than 5%. Moringa oleifera oil (MO) was used as a compatibilizer to PM mixtures using oil concentrations higher than 5%, 10% and 15% in mass. PMs were analysed at first based on mechanical properties which indicated a better concentration at 15% of MO. This article presents a study of MO influence on biodegradation behaviour of PM, which was composed of low-density polyethylene obtained from food bags and biopolymers (PB) obtained in market plastic bags. PM doped with different concentrations of MO was submitted to studies of mechanical, chemical, morphological and thermal properties and their biodegradation behaviour was evaluated. The concentration of 15% of MO increased the thermal resistance of PM, improved the biodegradation behaviour according to controlled and free tests and reduced its stiffness without a loss of important mechanical properties. The results of this work showed that MO influenced positively the biodegradation of the PM mixture by improving 30% of the degrading speed.

20.
PLoS One ; 13(8): e0202402, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148852

RESUMO

The occurrence of protein synthesis errors (mistranslation) above the typical mean mistranslation level of 10-4 is mostly deleterious to yeast, zebrafish and mammal cells. Previous yeast studies have shown that mistranslation affects fitness and deregulates genes related to lipid metabolism, but there is no experimental proof that such errors alter yeast lipid profiles. We engineered yeast strains to misincorporate serine at alanine and glycine sites on a global scale and evaluated the putative effects on the lipidome. Lipids from whole cells were extracted and analysed by thin layer chromatography (TLC), liquid chromatography-mass spectrometry(LC-MS) and gas chromatography (GC). Oxidative damage, fatty acid desaturation and membrane fluidity changes were screened to identify putative alterations in lipid profiles in both logarithmic (fermentative) and post-diauxic shift (respiratory) phases. There were alterations in several lipid classes, namely lyso-phosphatidylcholine, phosphatidic acid, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and triglyceride, and in the fatty acid profiles, namely C16:1, C16:0, C18:1 and C18:0. Overall, the relative content of lipid species with saturated FA increased in detriment of those with unsaturated fatty acids. The expression of the OLE1 mRNA was deregulated, but phospholipid fluidity changes were not observed. These data expand current knowledge of mistranslation biology and highlight its putative roles in human diseases.


Assuntos
Ácidos Graxos/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Estearoil-CoA Dessaturase/biossíntese , Ácidos Graxos/genética , Saccharomyces cerevisiae/genética , Estearoil-CoA Dessaturase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA