Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 162: 112230, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32392152

RESUMO

Solid-state zinc ion sensor is developed with high enough resolution and reproducibility for the potential application in brain injury monitoring. An optical diffuser is incorporated into the zinc ion sensor based on optical fiber and hydrogel doped with the fluorescent zinc ion probe molecule meso-2,6-Dichlorophenyltripyrrinone (TPN-Cl2). The diffuser transforms the high-peak-intensity excitation light near the fiber end into a broad light with moderate local intensity to reduce the degradation of the probe molecule. Reversible detection can be reached for 1, 2, and 5 µM (10-6 Molar), with slopes 0.3, 0.6, and 0.8 respectively. This is the pathophysiological concentration range after brain injury. The sensor is applied to neuron-glial cultures and macrophage under the stimulation of lipopolysaccharide (LPS), KCl and oxygen/glucose deprivation (OGD) that reflect inflammation, depolarization and ischemia respectively, mimicking events after brain injury. The zinc ion level is raised to 4-5 µM after LPS treatment, and then reduced to <3 µM after the co-treatment with the herbal drug silymarin. The results suggest the conditions of the neural cells under stress can be monitored.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32367710

RESUMO

A metal-oxide material (indium zinc oxide [IZO]) device with near-infrared (NIR) laser annealing was demonstrated on both glass and bendable plastic substrates (polycarbonate, polyethylene, and polyethylene terephthalate). After only 60 s, the sheet resistance of IZO films annealed with a laser was comparable to that of thermal-annealed devices at temperatures in the range of 200°C-300°C (1 hr). XPS, ATR, and AFM were used to investigate the changes in the sheet resistance and correlate them to the composition and morphology of the thin film. Finally, the NIR laser-annealed IZO films were demonstrated to be capable of detecting changes in humidity and serving as a highly sensitive gas sensor of hydrogen sulfide (in parts-per-billion concentration), with room-temperature operation on a bendable substrate.

3.
J Breath Res ; 14(3): 036002, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32015218

RESUMO

Previous studies have shown that breath ammonia (breath-NH3) concentration is associated with blood urea nitrogen (BUN) levels. However, interindividual variations in breath-NH3 concentrations were observed. Thus, the present study aimed to assess the effect of oral cavity conditions on breath-NH3 concentration and to validate whether the measurement of breath-NH3 concentration is feasible in clinical settings. A total of 125 individuals, including patients with stage 3 to 5 chronic kidney disease (CKD3-5), those on dialysis, and healthy participants, were recruited. A nanostructured sensor was used to detect breath-NH3 concentrations. Pre- and post-gargling as well as pre- and post-hemodialysis (HD) breath-NH3, salivary pH, and salivary urea levels were measured. Breath-NH3, salivary urea, salivary pH, and BUN levels were positively correlated to each other. Breath-NH3 concentrations were associated with BUN levels (r = 0.43, p < 0.001) and were significantly higher in CKD3-5 (p < 0.005) and dialysis patients (p < 0.001) than in healthy participants. Higher correlation coefficients were noted between breath-NH3 concentrations and BUN levels during follow-up (r = 0.59-0.94, p < 0.05). When the cutoff value of breath-NH3 was set at 523.65 ppb, its sensitivity and specificity in predicting CKD (BUN level >24 mg dl-1) were 87.6% and 80.9%, respectively. Breath-NH3 concentrations decreased after HD (p < 0.001) and immediately after gargling (p < 0.01). Breath-NH3 concentration, which was affected by gargling, was correlated to BUN level. The measurement of breath-NH3 concentration using the nanostructured device may be used as a tool for CKD detection and personalized point-of-care for CKD and dialysis patients. The current study had a small sample size. Thus, further studies with a larger cohort must be conducted to validate the effect of oral factors on breath-NH3 concentration and to validate the benefit of breath-NH3 measurement.

4.
ACS Appl Mater Interfaces ; 11(33): 29901-29909, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31353900

RESUMO

Kirigami graphene allows a two-dimensional material to transform into a three-dimensional structure, which constitutes an effective transparent electrode candidate for photovoltaic (PV) cells having a surface texture. The surface texture of an inverted pyramid was fabricated on a Si substrate using photolithography and wet etching, followed by metal-assisted chemical etching to obtain silicon nanowires on the surface of the inverted pyramid. Kirigami graphene with a cross-pattern array was prepared using photolithography and plasma etching on a copper foil. Then, kirigami graphene was transferred onto hybrid heterojunction PV cells with a poly(ethylene terephthalate)/silicone film. These cells consisted of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as the p-type semiconductor, Si(100) as the inorganic n-type semiconductor, and a silver comb electrode on top of PEDOT:PSS. The conductivity of PEDOT:PSS was greatly improved. This improvement was significantly higher than that achieved by the continuous graphene sheet without a pattern. Transmission electron microscopy and Raman spectroscopy results revealed that the greater improvement with kirigami graphene was due to the larger contact area between PEDOT:PSS and graphene. By using two-layer graphene having a kirigami pattern, the power conversion efficiency, under simulated AM1.5G illumination conditions, was significantly augmented by up to 9.8% (from 10.03 to 11.01%).

5.
ACS Sens ; 4(4): 1023-1031, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30892019

RESUMO

Point-of-care (POC) application for monitoring of breath ammonia (BA) in hemodialysis (HD) patients has emerged as a promising noninvasive health monitoring approach. In this context, many organic gas sensors have been reported for BA detection. However, one of the major challenges for its integration with affordable household POC application is to achieve stable performance for accuracy and high operational current at low voltage for low-cost read-out circuitry. Herein, we exploited the stability of the Donor-Acceptor polymer on the cylindrical nanopore structure to realize the sensors with a high sensitivity and stability. Then, we proposed a double active layer (DL) strategy that exploits an ultrathin layer of Poly(3-hexylthiophene-2,5-diyl) (P3HT) to serve as a work function buffer to enhance the operational current. The DL sensor exhibits a sustainable enhanced operational current of microampere level and a stable sensing response even with the presence of P3HT layer. This effect is carefully examined with different aspects, including vertical composition profile of DL configuration, lifetime testing on different sensing layer, morphological analysis, and the versatility of the DL strategy. Finally, we utilize the DL sensor to conduct a tracing of BA concentration in two HD patients before and after HD, and correlate it with the blood urea nitrogen (BUN) levels. A good correlation coefficient of 0.96 is achieved. Moreover, the feasibility of DL sensor integrated into a low-cost circuitry was also verified. The results demonstrate the potential of this DL strategy to be used to integrate organic sensor for affordable household POC devices.

6.
Biosens Bioelectron ; 132: 352-359, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30897542

RESUMO

Salivary urea was reported to be a useful biomarker to reflect the blood urea nitrogen in chronic kidney disease patients. However, as a new biomarker, enormous clinical trials are required to define the intended-use and to verify the specification. In this report, we demonstrated a low-cost easy-operated real-time sensing system (optical fiber-urea-sensing, OFUS, system) to detect salivary urea. We aim to make the system easily reproduced by the community to stimulate abundant clinical tests worldwide. The OFUS system is composed of a simple three-dimensional printed tank to link with two optical fibers, one connecting with a commercial light-emitting diode to deliver the input light signal, the other connecting with a commercial cadmium sulfide photo-conductive cell to detect the sensing signal. To allow on-site detection without any sample pretreatment, only 1 µl saliva is needed to be mixed with 10 µl urease solution and 90 µl pH indicator solution in the reaction tank and the detection time is only 20 s. A stable and reproducible calibration curve can be easily built with a detection range as 24-300 mg/dL. The OFUS system successfully detected saliva with added synthetic urea and samples from chronic kidney disease patients. A good agreement between the OFUS system and the commercial kit was obtained. A good correlation between salivary urea and the blood urea nitrogen was also confirmed.


Assuntos
Técnicas Biossensoriais/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Testes Imediatos , Saliva/química , Ureia/análise , Técnicas Biossensoriais/economia , Desenho de Equipamento , Tecnologia de Fibra Óptica/economia , Humanos , Limite de Detecção , Testes Imediatos/economia , Insuficiência Renal Crônica/diagnóstico , Urease/química
7.
Chempluschem ; 84(9): 1375-1383, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31944041

RESUMO

The instability of the organic light-emitting diodes (OLEDs) during operation can be attributed to the existence of point defects on the organic layers. In this work, the effect of mixed-host emissive layer and the thermal annealing treatment were investigated to eliminate defects and to boost the device performance. The mixed-host system includes 4,4',4''-tri (9-carbazoyl) triphenylamine (TCTA) and 2,7-bis(diphenylphosphoryl)-9, 9'-spirobi[fluorene] (SPPO13). The mixed-host emissive layer with thermal annealing treatment showed low roughness and few pinholes, and the devices fabricated from this emissive layer exhibited high efficiencies, high stabilities, and long lifetimes. The red and orange-red OLEDs exhibited efficiencies of 13.9 cd/A and 24.35 cd/A, respectively. The longest half-lifetime (L0 =500 cd/m2 ) of the red and orange-red OLEDs were 158 h and 180 h, respectively. Efforts were made to solve problems in large-area coating and to reduce the number of defects on in organic layer. Large-active-area (active area=3 cm×4 cm) red phosphorescent OLEDs (PhOLEDs) devices were realized with very high current efficiency up to 9 cd/A.

8.
ChemSusChem ; 11(14): 2429-2435, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29766668

RESUMO

Interfacial engineering plays an important role in determining the performance and stability of polymer solar cells (PSCs). In this study, thermally stable highly efficient PSCs are fabricated by incorporating a solution-processed cathode interfacial layer (CIL), including 4,4'-({[methyl(4-sulfonatobutyl)ammonio]bis(propane-3,1-diyl)}bis(dimethylammoniumdiyl))bis(butane-1-sulfonate) (MSAPBS) and polyethylenimine (PEI). For PSCs based on blends of poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-[4-(2-ethylhexyl)-3fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl]} (PBDTTT-EFT) and [6,6]-phenyl C71 -butyric acid methyl ester (PC71 BM), the maximum power conversion efficiency (PCE) of inverted PSCs reaches 8.1 % and 7.2 % for MSAPBS and PEI CILs, respectively. The inverted PEI devices exhibit remarkable stability (lifetime >6000 h) under accelerated thermal aging (at 80 °C in ambient environment), which is much superior to that of the device with commonly used LiF CIL (lifetime≈33 h). This stability represents the best result reported for PSCs. The promising results based on this strategy can stimulate further work on the development of novel CILs for PSCs and pave the way towards the realization of commercially viable PSCs with high performance and long-term stability.

9.
ACS Sens ; 2(12): 1788-1795, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29124925

RESUMO

In this work, a TFB (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-s-butylphenyl)diphenylamine)]) sensor with a cylindrical nanopore structure exhibits a high sensitivity to ammonia in ppb-regime. The lifetime and sensitivity of the TFB sensor were studied and compared to those of P3HT (poly(3-hexylthiophene)), NPB (N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine), and TAPC (4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine]) sensors with the same cylindrical nanopore structures. The TFB sensor outstands the others in sensitivity and lifetime and it shows a sensing response (current variation ratio) of 13% to 100 ppb ammonia after 64 days of storage in air. A repeated sensing periods testing and a long-term measurement have also been demonstrated for the test of robustness. The performance of the TFB sensor is stable in both tests, which reveals that the TFB sensor can be utilized in our targeting clinical trials. In the last part of this work, we study the change of ammonia concentration in the breath of hemodialysis (HD) patients before and after dialysis. An obvious drop of breath ammonia concentration can be observed after dialysis. The reduction of breath ammonia is also correlated with the reduction of blood urea nitrogen (BUN). A correlation coefficient of 0.82 is achieved. The result implies that TFB sensor may be used as a real-time and low cost breath ammonia sensor for the daily tracking of hemodialysis patients.


Assuntos
Amônia/análise , Testes Respiratórios/métodos , Fluorenos/química , Polímeros/química , Diálise Renal , Idoso , Nitrogênio da Ureia Sanguínea , Testes Respiratórios/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanoporos
10.
ACS Appl Mater Interfaces ; 9(40): 35279-35286, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28891282

RESUMO

This study developed flexible light-emitting diodes (LEDs) with warm white and neutral white light. A simple ultraviolet flip-chip sticking process was adopted for the pumping source and combined with polymer and quantum dot (QD) films technology to yield white light. The polymer-blended flexible LEDs exhibited higher luminous efficiency than the QD-blended flexible LEDs. Moreover, the polymer-blended LEDs achieved excellent color-rendering index (CRI) values (Ra = 96 and R9 = 96), with high reliability, demonstrating high suitability for special applications like accent, down, or retrofit lights in the future. In places such as a museum, kitchen, or surgery room, its high R9 and high CRI characteristics can provide high-quality services.

11.
ACS Sens ; 2(4): 531-539, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28723177

RESUMO

In this work, we successfully demonstrate a fast method to determine the fish freshness by using a sensing system containing an ultrasensitive amine gas sensor to detect the volatile amine gas from the raw fish meat. When traditional titration method takes 4 h and complicated steps to test the total volatile basic nitrogen (TVB-N) as a worldwide standard for fish freshness, our sensor takes 1 min to deliver an electrical sensing response that is highly correlated with the TVB-N value. When detecting a fresh fish with a TVB-N as 18 mg/100 g, the sensor delivers an effective ammonia concentration as 100 ppb. For TVB-N as 28-35 mg/100 g, a well-accepted freshness limit, the effective ammonia concentration is as 200-300 ppb. The ppb-regime sensitivity of the sensor and the humidity control in the sensing system are the keys to realizing fast and accurate detection. It is expected that the results in this report enable the development of on-site freshness detection and real-time monitoring in a fish factory.

12.
ChemSusChem ; 10(13): 2778-2787, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28516516

RESUMO

Here, we report that long-term stable and efficient organic solar cells (OSCs) can be obtained through the following strategies: i) combination of rapid-drying blade-coating deposition with an appropriate thermal annealing treatment to obtain an optimized morphology of the active layer; ii) insertion of interfacial layers to optimize the interfacial properties. The resulting devices based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl)] (PBDTTT-EFT):[6,6]-phenyl C71 butyric acid methyl ester (PC71 BM) blend as the active layer exhibits a power conversion efficiency (PCE) up to 9.57 %, which represents the highest efficiency ever reported for blade-coated OSCs. Importantly, the conventional structure devices based on poly(3-hexylthiophene) (P3HT):phenyl-C61 -butyric acid methyl ester (PCBM) blend can retain approximately 65 % of their initial PCE for almost 2 years under operating conditions, which is the best result ever reported for long-term stable OSCs under operational conditions. More encouragingly, long-term stable large-area OSCs (active area=216 cm2 ) based on P3HT:PCBM blend are also demonstrated. Our findings represent an important step toward the development of large-area OSCs with high performance and long-term stability.


Assuntos
Fontes de Energia Elétrica , Compostos Orgânicos/química , Energia Solar , Polímeros/química , Temperatura
13.
Opt Express ; 24(2): A414-23, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832593

RESUMO

In this work, we investigate blade-coated organic interlayers at the rear surface of hybrid organic-silicon photovoltaics based on two small molecules: Tris(8-hydroxyquinolinato) aluminium (Alq(3)) and 1,3-bis(2-(4-tert-butylphenyl)-1,3,4-oxadiazol-5-yl) benzene (OXD-7). In particular, soluble Alq(3) resulting in a uniform thin film with a root-mean-square roughness < 0.2nm is demonstrated for the first time. Both devices with the Alq(3) and OXD-7 interlayers show notable enhancement in the open-circuit voltage and fill-factor, leading to a net efficiency increase by over 2% from the reference, up to 11.8% and 12.5% respectively. The capacitance-voltage characteristics confirm the role of the small-molecule interlayers resembling a thin interfacial oxide layer for the Al-Si Schottky barrier to enhance the built-in potential and facilitate charge transport. Moreover, the Alq(3) interlayer in optimized devices exhibits isolated phases with a large surface roughness, in contrast to the OXD-7 which forms a continuous uniform thin film. The distinct morphological differences between the two interlayers further suggest different enhancement mechanisms and hence offer versatile functionalities to the advent of hybrid organic-silicon photovoltaics.

14.
ACS Appl Mater Interfaces ; 7(34): 18899-903, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26278552

RESUMO

We demonstrated a large-area nanopatterning technique with the help of a non-close-packed PS sphere layer over a large-area substrate. The non-close-packed PS sphere layer is fabricated by blade coating method. It was demonstrated that non-close-packed PS spheres can be achieved within an area of 18 cm × 25 cm on a rigid glass substrate and within an area of 10 cm × 10 cm on a flexible substrate. We also demonstrated that the blade-coated non-close-packed PS sphere layer was suitable for the mass production of vertical organic transistors over a large area.

15.
Opt Express ; 23(7): A204-10, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968786

RESUMO

The hybrid white light-emitting didoes (LED) with polyfluoren (PFO) polymer and quantum dot (QD) was investigated using dispensing method at the different correlated color temperature (CCT) for cool and warm color temperature. This result indicates that the hybrid white LED device has the higher luminous efficiency than the convention one, which could be attributed to the increased utilization rate of the UV light. Furthermore, the CIE 1931 coordinate of high quality white hybrid LED with different CCT range from 3000K to 9000K is demonstrated. Consequently, the angular-dependent CCT and the thermal issue of the hybrid white LED device were also analyzed in this study.

16.
Sensors (Basel) ; 14(9): 16287-95, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25184492

RESUMO

In this study, we investigate the keys to obtain a sensitive ammonia sensor with high air stability by using a low-cost polythiophene diode with a vertical channel and a porous top electrode. Poly(3-hexylthiophene) (P3HT) and air-stable poly(5,5'-bis(3-dodecyl-2-thienyl)-2,2'-bithiophene) (PQT-12) are both evaluated as the active sensing layer. Two-dimensional current simulation reveals that the proposed device exhibits numerous connected vertical nanometer junctions (VNJ). Due to the de-doping reaction between ammonia molecules and the bulk current flowing through the vertical channel, both PQT-12 and P3HT VNJ-diodes exhibit detection limits of 50-ppb ammonia. The P3HT VNJ-diode, however, becomes unstable after being stored in air for two days. On the contrary, the PQT-12 VNJ-diode keeps an almost unchanged response to 50-ppb ammonia after being stored in air for 25 days. The improved storage lifetime of an organic-semiconductor-based gas sensor in air is successfully demonstrated.


Assuntos
Amônia/análise , Condutometria/instrumentação , Gases/análise , Compostos Organosselênicos/química , Semicondutores , Tiofenos/química , Desenho de Equipamento , Análise de Falha de Equipamento , Transdutores
17.
ACS Nano ; 7(12): 10780-7, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24224917

RESUMO

Interface carrier recombination currently hinders the performance of hybrid organic-silicon heterojunction solar cells for high-efficiency low-cost photovoltaics. Here, we introduce an intermediate 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) layer into hybrid heterojunction solar cells based on silicon nanowires (SiNWs) and conjugate polymer poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS). The highest power conversion efficiency reaches a record 13.01%, which is largely ascribed to the modified organic surface morphology and suppressed saturation current that boost the open-circuit voltage and fill factor. We show that the insertion of TAPC increases the minority carrier lifetime because of an energy offset at the heterojunction interface. Furthermore, X-ray photoemission spectroscopy reveals that TAPC can effectively block the strong oxidation reaction occurring between PEDOT:PSS and silicon, which improves the device characteristics and assurances for reliability. These learnings point toward future directions for versatile interface engineering techniques for the attainment of highly efficient hybrid photovoltaics.

18.
Anal Chem ; 85(6): 3110-7, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23394145

RESUMO

We successfully demonstrate the first solid-state sensor to have reliable responses to breath ammonia of rat. For thioacetamide (TAA)-induced hepatopathy rats, we observe that the proposed sensor can detect liver that undergoes acute-moderate hepatopathy with a p-value less than 0.05. The proposed sensor is an organic diode with vertical nanojunctions produced by using low-cost colloidal lithography. Its simple structure and low production cost facilitates the development of point-of-care technology. We also anticipate that the study is a starting point for investigating sophisticated breath-ammonia-related disease models.


Assuntos
Amônia/química , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Nanoestruturas , Animais , Testes Respiratórios/métodos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Feminino , Ratos , Ratos Sprague-Dawley , Tioacetamida/toxicidade
19.
ACS Appl Mater Interfaces ; 4(12): 6857-64, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23167527

RESUMO

Hybrid organic-silicon heterojunction solar cells promise a significant reduction on fabrication costs by avoiding energy-intensive processes. However, their scalability remains challenging without a low-cost transparent electrode. In this work, we present solution-processed silver-nanowire meshes that uniformly cover the microtextured surface of hybrid heterojunction solar cells to enable efficient carrier collection for large device area. We systematically compare the characteristics and device performance with long and short nanowires with an average length/diameter of 30 µm/115 nm and 15 µm/45 nm, respectively, to those with silver metal grids. A remarkable power conversion efficiency of 10.1% is achieved with a device area of 1 × 1 cm(2) under 100 mW/cm(2) of AM1.5G illumination for the hybrid solar cells employing long wires, which represents an enhancement factor of up to 36.5% compared to the metal grid counterpart. The high-quality nanowire network displays an excellent spatial uniformity of photocurrent generation via distributed nanowire meshes and low dependence on efficient charge transport under a high light-injection condition with increased device area. The capability of silver nanowires as flexible transparent electrodes presents a great opportunity to accelerate the mass deployment of high-efficiency hybrid silicon photovoltaics via simple and rapid soluble processes.

20.
Adv Mater ; 24(26): 3509-14, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22678659

RESUMO

An effective approach to reduce defects and increase electron mobility in a-IGZO thin-film transistors (a-IGZO TFTs) is introduced. A strong reduction layer, calcium, is capped onto the back interface of a-IGZO TFT. After calcium capping, the effective electron mobility of a-IGZO TFT increases from 12 cm(2) V(-1) s(-1) to 160 cm(2) V(-1) s(-1). This high mobility is a new record, which implies that the proposed defect reduction effect is key to improve electron transport in oxide semiconductor materials.


Assuntos
Gálio/química , Índio/química , Transistores Eletrônicos , Óxido de Zinco/química , Transporte de Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA