RESUMO
By reacting a 3,6-ditriazolyl-2,5-dihydroxybenzoquinone (H2trz2An) anilato linker with LnIII ions (LnIII = Dy, Tb, Ho), two different series of polymorphs, formulated as [Ln2(trz2An)3(H2O)4] n ·10H2O (DyIII, 1a; TbIII, 2a, HoIII, 3a) and [Ln2(trz2An)3(H2O)4] n ·7H2O (DyIII, 1b, TbIII, 2b, HoIII, 3b) have been obtained. In these series the two DyIII-coordination networks (1a and 1b) and the TbIII-coordination polymer (2b) show a Single Ion Magnet (SIM) behavior. 1-3a MOFs show reversible structural flexibility upon removal of a coordinated water molecule from a distorted hexagonal 2D framework to a distorted 3,6-brickwall rectangular 3D structure in [Ln2(trz2An)3(H2O)2] n ·2H2O (DyIII, 1a_des; TbIII, 2a_des, HoIII, 3a_des) involving shrinkage/expansion of the hexagonal-rectangular networks. Noteworthy, 2b represents the first example of a TbIII-anilate-based coordination polymer showing SIM behaviour to date and the best SIM properties within the polymorphs. Theoretical investigation via ab initio CASSCF calculations supports this behavior, since 2b shows less mixing between the m J states of the ground state among all the studied complexes.
RESUMO
Novel heteroleptic anilate-based lanthanide MOFs (LnIII = Tb, Dy, Ho) have been obtained under hydrothermal conditions by the ancillary ligand synthetic strategy. These structurally isomorphous species contain octacoordinated LnIII ions with coordination polyhedra approaching an ideal D2d symmetry, best described by a distorted biaugmented trigonal prismatic C2v geometry. In the whole series, only the Dy-MOF exhibits SMM behaviour.
RESUMO
This work challenges the conventional approach of using NdIII 4F3/2 lifetime changes for evaluating the experimental NdIII â YbIII energy transfer rate and efficiency. Using near-infrared (NIR) emitting Nd:Yb mixed-metal coordination polymers (CPs), synthesized via solvent-free thermal grinding, we demonstrate that the NdIII [2H11/2 â 4I15/2] â YbIII [2F7/2 â 2F5/2] pathway, previously overlooked, dominates energy transfer due to superior energy resonance and J-level selection rule compatibility. This finding upends the conventional focus on the NdIII [4F3/2 â 4I11/2] â YbIII [2F7/2 â 2F5/2] transition pathway. We characterized Nd0.890Yb0.110(BTC)(H2O)6 as a promising cryogenic NIR thermometry system and employed our novel energy transfer understanding to perform simulations, yielding theoretical thermometric parameters and sensitivities for diverse Nd:Yb ratios. Strikingly, experimental thermometric data closely matched the theoretical predictions, validating our revised model. This novel perspective on NdIII â YbIII energy transfer holds general applicability for the NdIII/YbIII pair, unveiling an important spectroscopic feature with broad implications for energy transfer-driven materials design.
RESUMO
Dinuclear lanthanide complexes [((HB(pz)3)2Dy)2(µ-Th2An)] (1Dy) and [((HB(pz)3)2Dy)2(µ-ClCNAn)] (2Dy), based on the hydrotris(pyrazol-1-yl)borate (HBpz3-) scorpionate capping ligand and anilate (An2-) bridging linkers, namely homosubstituted dithiophene- and heterosubstituted chlorocyanoanilate, bearing electron-donating and withdrawing substituents at the 3,6-positions of the benzoquinone core, are reported. 1Dy shows an octacoordinated {N6O2} DyIII ion within a D4h distorted square antiprismatic coordination, an ideal geometry for Single-Molecule Magnet (SMM) behavior, given its oblate nature, whereas in 2Dy the octacoordinated DyIII ion adopts a D2d triangular dodecahedron geometry, while maintaining the same {N6O2} coordination sphere. Both complexes show field-induced single molecule magnet (SMM) behaviour, with tuning of the slow magnetic relaxation as a function of the nature of the substituents at the 3,6-positions of the anilate moiety. A comparison of the Arrhenius fitting parameters for 1Dy and 2Dy supports the hypothesis that square antiprismatic DyIII complexes, as 1Dy, exhibit higher energy barriers. This interpretation is supported by ab initio calculations that also shed light on the crucial role of intermolecular dipolar interactions.
RESUMO
Two-dimensional layered coordination polymers based on the hetero-substituted 3-chloro-6-cyano-2,5-dihydroxybenzoquinone ligands, hereafter ClCNAn2- anilate, and LnIII ions (Tb and Eu) are reported. Compounds 1 and 2, formulated as Ln2(ClCNAn)3(DMSO)6 (LnIII = Tb, 1; Eu, 2), and their related intermediates 1' and 2', formulated as Ln2(ClCNAn)3(H2O)x·yH2O (x + y likely = 12, Ln = Tb, 1'; and Eu, 2'), were prepared by a conventional one-pot reaction (the latter) and recrystallized from DMSO solvent (the former). Polyhydrated intermediates 1' and 2' show very similar XRPD patterns, while, despite their common stoichiometry, 1 and 2 are not isostructural. Compound 1 consists of a 2D coordination framework of 3,6 topology, where [Tb(DMSO)3]III moieties are bridged by three bis-chelating ClCNAn2- ligands, forming distorted hexagons. Ultrathin nanosheets of 1 were obtained by exfoliation via the liquid-assisted sonication method and characterized by atomic force microscopy, confirming the 2D nature of 1. The crystal structure of 2, still showing the presence of 2D sheets with a "hexagonal" mesh and a common (3,6) connectivity, is based onto flat, non-corrugated slabs. Indeed, at a larger scale, the different "rectangular tiles" show clear roofing in 1, which is totally absent in 2. The magnetic behavior of 1 very likely indicates depopulation of the highest crystal-field levels, as expected for TbIII compounds.
RESUMO
By combining 3,6-N-ditriazolyl-2,5-dihydroxy-1,4-benzoquinone (H2trz2An) with NIR-emitting ErIII ions, two different 3D neutral polymorphic frameworks (1a and 1b), differing in the number of uncoordinated water molecules, formulated as [Er2(trz2An)3(H2O)4] n ·xH2O (x = 10, a; x = 7, b), have been obtained. The structure of 1a shows layers with (6,3) topology forming six-membered rings with distorted hexagonal cavities along the bc plane. These 2D layers are interconnected through the N4 atoms of the two pendant arms of the trz2An linkers, leading to a 3D framework, where neighboring layers are eclipsed along the a axis, with hexagonal channels filled with water molecules. In 1b, layers with (6,3) topology in the [101] plane are present, each ErIII ion being connected to three other ErIII ions through bis-bidentate trz2An linkers, forming rectangular six-membered cavities. 1a and 1b are multifunctional materials showing coexistence of NIR emission and field-induced slow relaxation of the magnetization. Remarkably, 1a is a flexible MOF, showing a reversible structural phase transition involving shrinkage/expansion from a distorted hexagonal 2D framework to a distorted 3,6-brickwall rectangular 3D structure in [Er2(trz2An)3(H2O)2] n ·2H2O (1a_des). This transition is triggered by a dehydration/hydration process under mild conditions (vacuum/heating to 360 K). The partially dehydrated compound shows a sizeable change in the emission properties and an improvement of the magnetic blocking temperature with respect to the hydrated compound, mainly related to the loss of one water coordination molecule. Theoretical calculations support the experimental findings, indicating that the slight improvement observed in the magnetic properties has its origin in the change of the ligand field around the ErIII ion due to the loss of a water molecule.
RESUMO
The synthesis, structural and photophysical characterization, and theoretical studies on homo/heteroleptic neutral 2D-layered coordination polymers (CPs), obtained by combining the ErIII ion with chlorocyananilate (ClCNAn) and/or tetrafluoroterephthalate (F4BDC) linkers, are herein reported. The structure of the heteroleptic ErIII-based CP, formulated as [Er2(ClCNAn)2(F4BDC)(DMSO)6]n (1) is also reported. 1 crystallizes in the triclinic P1Ì space group, and the structure consists of neutral 2D layers formed by ErIII ions linked through the two linkers oriented in such a way that the neighboring 2D layers are eclipsed along the a axis, leading to parallelogram-like cavities. Photophysical measurements highlight the prominent role of chlorocyananilate linkers as optical antennas toward lanthanide ions, while wave-function-theory analysis supports the experimental findings, providing evidence for the effect of ligand substitution on the luminescence properties of homo/heteroleptic 2D CPs.
RESUMO
Achieving metal-organic frameworks (MOFs) in the form of nanoparticles (NanoMOFs) represents a recent challenge due to the possibility to combine the intrinsic porosity of these materials with the nanometric dimension, a fundamental requirement for strategic biomedical applications. In this outlook we envision the current/future opportunities of the NanoMOFs in the field of biomedicine, with particular emphasis on (i) biocompatible MOFs composition; (ii) MOFs miniaturization and (iii) nanoMOFs applications.
Assuntos
Estruturas Metalorgânicas , Nanopartículas , PorosidadeRESUMO
The potential of silicon-based fluorescent platforms for the detection of trace toxic metal ions was investigated in an aqueous environment. To this aim, silicon chips were first functionalized with amino groups, and fluorescein organic dyes, used as sensing molecules, were then covalently linked to the surface via formation of thiourea groups. The obtained hybrid heterostructures exhibited high sensitivity and selectivity towards copper(ii), a limit of detection compatible with the recommended upper limits for copper in drinking water, and good reversibility using a standard metal-chelating agent. The fluorophore-analyte interaction mechanism at the basis of the reported fluorescence quenching, as well as the potential of performance improvement, were also studied. The herein presented sensing architecture allows, in principle, tailoring of the selectivity towards other metal ions by proper fluorophore selection, and provides a favorable outlook for integration of fluorescent chemosensors with silicon photonics technology.
RESUMO
Multifunctional nano-heterostructures (NHSs) with controlled morphology are cardinal in many applications, but the understanding of the nanoscale colloidal chemistry is yet to be fulfilled. The stability of the involved crystalline phases in different solvents at mid- and high-temperatures and reaction kinetics considerably affect the nucleation and growth of the materials and their final architecture. The formation mechanism of manganese ferrite-based core-shell NHSs is herein investigated. The effects of the core size (8, 10, and 11 nm), the shell nature (cobalt ferrite and spinel iron oxide) and the polarity of the solvent (toluene and octanol) on the dissolution phenomena of manganese ferrite are also studied. Noteworthily, the combined use of bulk (powder X-ray diffraction, 57Fe Mössbauer spectroscopy, and DC magnetometry) and nanoscale techniques (HRTEM and STEM-EDX) provides new insights into the manganese ferrite dissolution phenomena, the colloidal stability in an organic environment, and the critical size below which dissolution is complete. Moreover, the dissolved manganese and iron ions react further, leading to an inverted core-shell in the mother liquor solution, paving the way to novel synthetic pathways in nanocrystal design. The MnFe2O4@CoFe2O4 core-shell heterostructures were also employed as heat mediators, exploiting the magnetic coupling between a hard (CoFe2O4) and a soft phase (MnFe2O4).
RESUMO
Electrocrystallization of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) organic donor in the presence of the [Fe(ClCNAn)3]3- tris(chlorocyananilato)ferrate(III) paramagnetic anion in different stoichiometric ratios and solvent mixtures afforded two different hybrid systems formulated as [BEDT-TTF]4[Fe(ClCNAn)3]·3H2O (1) and [BEDT-TTF]5[Fe(ClCNAn)3]2·2CH3CN (2) (An = anilato). Compounds 1 and 2 present unusual structures without the typical segregated organic and inorganic layers, where layers of 1 are formed by Λ and Δ enantiomers of the anionic paramagnetic complex together with mixed-valence BEDT-TTF tetramers, while layers of 2 are formed by Λ and Δ enantiomers of the paramagnetic complex together with dicationic BEDT-TTF dimers and monomers. Compounds 1 and 2 show semiconducting behaviors with room-temperature conductivities of ca. 6 × 10-3 S cm-1 (ambient pressure) and 1 × 10-3 S cm-1 (under applied pressure of 12.1 GPa), respectively, due to strong dimerization between the donors. Magnetic measurements performed on compound 1 indicate weak antiferromagnetic coupling between high-spin FeIII (SFe = 5/2) and mixed-valence radical cation diyads (BEDT-TTF)2+ (Srad = 1/2) mediated by the anilate ligands, together with an important Pauli paramagnetism typical for conducting systems.
RESUMO
A series of two-dimensional (2D)-layered coordination polymers (CPs) based on the heterosubstituted anilate ligand ClCNAn2- derived from 3-chloro-6-cyano-2,5-dihydroxybenzoquinone and DyIII are reported. By changes in the synthetic methods (layering technique, solvothermal or conventional one-pot reactions) and conditions (solvent, concentration, etc.), different types of 2D extended networks could be prepared and structurally characterized. Compounds 1 and 1', two polymorphs with the formula [Dy2(ClCNAn)3(DMSO)6]n·(H2O)x [x = 7 (1), 0 (1')], were prepared by a conventional one-pot reaction and recrystallized at different concentrations. Compound 2, formulated as [Dy2(ClCNAn)3(DMF)6]n, was prepared by a layering technique, while compound 3, formulated as {(Me2NH2)2[Dy2(ClCNAn)4(H2O)2]·(DMF)2·(H2O)5}n, was obtained by a solvothermal method. Compounds 1 and 2 are neutral 2D CPs of the ClCNAn2- ligand and DyIII ions, while 3 presents 2D anionic layers of [Dy2(ClCNAn)4(H2O)2]2- alternating with cationic layers of Me2NH2+ ions. These compounds show very diverse networks, with compound 1 forming 2D (8,3) and (4,3) topology with eight- and four-membered rings with square cavities, 1' and 2, respectively, a 2D (6,3) topology with six-membered rings (a rectangular cavity for 1' and a regular hexagonal cavity for 2), and 3 a 2D (4,4) topology with distorted square cavities. In this respect, 1 and 1' represent the first examples of polymorphism in the family of anilate-based CPs. Thermal analysis measurements (differential scanning calorimetry and thermogravimetry) show an exothermic polymorphic transformation from the kinetically stable 1' phase to the thermodynamically stable phase 1. The magnetic behavior of 1-3 very likely indicates depopulation of the mJ levels, while the presence of weak antiferromagnetic coupling between the DyIII centers mediated by the anilate bridge cannot be excluded.
RESUMO
A Raman study on Zinc-substituted Cobalt ferrites, with different Zn(II) contents in each sample of formula: CoFe2O4 (1), Zn0.30Co0.70Fe2.00O4 (2), Zn0.46Co0.54Fe2.02O4 (3), Zn0.53Co0.47Fe2.02O4 (4) is reported. These samples show the same crystallite size (â¼6 nm), particle size (â¼7 nm) and particle size distribution (â¼20%) and they have been synthesized through heating up surfactant-assisted thermal decomposition of metalorganic precursors. The effect of Zn(II) substitution in the cationic distribution is investigated by using the known metal-oxygen vibrational modes in tetrahedral and octahedral sites. The presence of Zn(II) metal ion is determined through the band at 150 cm-1 (T2g(1) phonon mode), which is not present in the pure Co-ferrite, a blue-shift of the Eg vibrational mode depending on Zn(II)/Co(II) cationic distribution and a shoulder at â¼250 cm-1, which appears when zinc enters in the structure, and a broadening and a red-shift in the A1g phonon mode is observed in Raman spectra of 2-4 samples. Interestingly the latter represents a potential key probe to monitor the Zn(II) presence in Zn-substituted Co-ferrites.
RESUMO
An optical radiometry technique enabling simultaneous transmittance and reflectance measurements from both sides of a device was used to investigate bifacial diffuse absorptance of neutral-colored semitransparent perovskite solar cells based on a thin film of microsized perovskite islands. In such microstructured solar cells, diffuse irradiance was more effectively absorbed than direct irradiance at near-normal incidence, in contrast to reference solar cells comprising a continuous perovskite thin film. Experimental findings were discussed in ray-optic approximation in relation to the surface texture of the active layer, highlighting the role of light trapping. This absorptance spectroscopy technique is envisaged to find wide applicability to bifacial solar cells for building-integrated photovoltaics and other bifacial light-harvesting systems.
RESUMO
The mixed-valence FeIIFeIII 2D coordination polymer formulated as [TAG][FeIIFeIII(ClCNAn)3]·(solvate) 1 (TAG = tris(amino)-guanidinium, ClCNAn2- = chlorocyanoanilate dianionic ligand) crystallized in the polar trigonal space group P3. In the solid-state structure, determined both at 150 and at 10 K, anionic 2D honeycomb layers [FeIIFeIII(ClCNAn)3]- establish in the ab plane, with an intralayer metal-metal distance of 7.860 Å, alternating with cationic layers of TAG. The similar Fe-O distances suggest electron delocalization and an average oxidation state of +2.5 for each Fe center. The cation imposes its C3 symmetry to the structure and engages in intermolecular N-H···Cl hydrogen bonding with the ligand. Magnetic susceptibility characterization indicates magnetic ordering below 4 K and the presence of a hysteresis loop at 2 K with a coercive field of 60 Oe. Mössbauer measurements are in agreement with the existence of Fe(+2.5) ions at RT and statistic charge localization at 10 K. The compound shows semiconducting behavior with the in-plane conductivity of 2 × 10-3 S/cm, 3 orders of magnitude higher than the perpendicular one. A small-polaron hopping model has been applied to a series of oxalate-type FeIIFeIII 2D coordination polymers, providing a clear explanation on the much higher conductivity of the anilate-based systems than the oxalate ones.
RESUMO
Radical cation salts composed of a bis(ethylenedithio)tetrathiafulvalene (ET) donor with homo-/heterosubstituted Cl/CN anilic acids as purely organic molecular conducting materials formulated as [BEDT-TTF]2[HClCNAn] (1) and [BEDT-TTF][HCl2An] (2) have been prepared by electrocrystallization. Compounds 1 and 2 crystallized in the monoclinic space group P2/c for 1 and I2/a for 2, showing segregated donor-anion layers arranged in a α'-type donor packing pattern (1) and twisted parallel columns (2), respectively. Single-crystal conductivity measurements show that 1 is a semiconductor with room-temperature conductivity of 10-2 S cm-1 and an activation energy Ea of 1900 K.
RESUMO
A simple change of one chloro substituent on the chloranilate ligand with a cyano group dramatically affects the electronic properties of the anilate moiety inducing unprecedented luminescence properties in the class of anilate-based ligands and their metal complexes. Here we report on the optimized synthesis and full characterization, including photoluminescence, of the chlorocyananilate ligand (ClCNAn(2-)) (dianion of the 3-chloro-6-cyano-2,5-dihydroxybenzoquinone, H2ClCNC6O4), a unique example of a heterosubstituted anilate ligand whose electronic properties, optical properties and coordination chemistry have never been investigated to date, even though it has been known since 1966. The synthesis and full characterization of its tris-chelated metal complexes with Cr(iii), Fe(iii), and Al(iii) metal ions are also described herein. These complexes, formulated as [A]3[M(III)(ClCNAn)3] (A = (n-Bu)4N(+) or Ph4P(+); M(III) = Cr (), Fe (), Al ()), are isostructural. While and are potential molecular building blocks for the preparation of molecule-based magnets or paramagnetic conducting organic-inorganic hybrid systems, , instead, where the coordinated Al(iii) metal ions retain the luminescence of the ligand, represents a unique building block to achieve heterobimetallic assemblies showing emissive properties under visible light irradiation.
RESUMO
Electrocrystallization of enantiopure (S,S,S,S)- and (R,R,R,R)-tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) donors, as well as the racemic mixture, in the presence of potassium cations and the tris(chloranilato)ferrate(III) [Fe(Cl2An)3](3-) paramagnetic anion afforded a complete series of chiral magnetic molecular conductors formulated as ß-[(S,S,S,S)-TM-BEDT-TTF]3PPh4[K(I)Fe(III)(Cl2An)3]·3H2O (1), ß-[(R,R,R,R)-TM-BEDT-TTF]3PPh4[K(I)Fe(III)(Cl2An)3]·3H2O (2), and ß-[(rac)-TM-BEDT-TTF]3PPh4[K(I)Fe(III)(Cl2An)3]·3H2O (3). Compounds 1-3 are isostructural and crystallize in triclinic space groups (P1 for 1 and 2, P-1 for 3) showing a segregated organic-inorganic crystal structure, where anionic honeycomb layers obtained by self-assembling of the Λ and Δ enantiomers of the paramagnetic complex with potassium cations alternate with organic layers where the chiral donors are arranged in the ß packing motif. Compounds 1-3 show a molecular packing strongly influenced by the topology of the inorganic layers and behave as molecular semiconductors with room-temperature conductivity values of ca. 3 × 10(-4) S cm(-1). The magnetic properties are dominated by the paramagnetic S = 5/2 [Fe(Cl2An)3](3-) anions whose high-spin character is confirmed by magnetic susceptibility measurements. The correlation between crystal structure and conducting behavior has been studied by means of tight-binding band structure calculations which support the observed conducting properties.
RESUMO
A unique example of discrete molecular entity Nd(y)Er(x)Yb(3-(x+y))Q9 (1) (Q = quinolinolato) containing three different lanthanides simultaneously emitting in three different spectral regions in the NIR, ranging from 900 to 1600â nm, has been synthesized and fully chararacterized. A simple molecular strategy based on tuning metal composition in the Ln3Q9 framework, which contains inequivalent central and terminal coordination sites, has allowed a satisfactory ion-size-driven control of molecular speciation close to 90%. In 1 the central position of the larger Nd ion is well distinguished from the terminal ones of the smaller Yb(3+) and Er(3+), which are almost "vicariants" as found in the heterobimetallic Er(x)Yb(3-x)Q9 (2). The Ln3Q9 molecular architecture, which allows communication between the ions, has proved to afford multiple NIR emission in 1 and 2, and is promising to develop a variety of multifunctional materials through the variation of the Ln composition.
RESUMO
2,5-Bis(thiophene) and 2,5-bis(ethylenedioxy-thiophene) (EDOT) derivatives of 3,6-diethoxy-1,4-benzoquinone (para isomers) were prepared by Stille coupling between the 2,5-dibromo-3,6-diethoxy-1,4-benzoquinone precursors and (n-Bu)3Sn-R (R = 2-thiophenyl or 3,4-ethylenedioxy-2-thiophenyl) reagents. In a parallel series of experiments 2,6-bis(thiophene) and 2,6-EDOT-3,5-diethoxy-1,4-benzoquinone (meta isomers) were synthesized by the same strategy. The four compounds were structurally characterized. The thiophene derivatives show essentially planar conformation thanks to the conjugation and establishment of S···O 1,5-nonbonded interactions, while in the EDOT derivatives the thiophene moieties are twisted with respect to the benzoquinone ring because of the steric hindrance. TD-DFT calculations were performed on both para and meta thiophene isomers in order to explain the differences observed in the UV-Vis absorption spectra. The 2,5-derivatives are valuable precursors for thiophene containing anilate (An) ligands, as the first examples of electron rich substituent based anilates. The Cu(II) complex [Cu(Th2An)(tbbpy)]·2H2O (Th2An = thiophene-anilate; tbbpy = 4,4'-bis(tert-butyl)-2,2'-bipyridine) was isolated and structurally characterized. The metal center lies within a square planar coordination geometry, while the ligands engage in a set of intermolecular contacts.