Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Arch Pathol Lab Med ; 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31483999

RESUMO

CONTEXT.­: Detection of high-risk human papillomavirus (HR-HPV) in squamous cell carcinoma is important for classification and prognostication. In situ hybridization (ISH) is a commonly used HR-HPV-specific test that targets viral RNA or DNA. The College of American Pathologists (CAP) provides proficiency testing for laboratories performing HR-HPV ISH. OBJECTIVE.­: To compare the analytical performance of RNA- and DNA-based ISH methods on CAP HR-HPV proficiency tests. DESIGN.­: Data from the 2016-2018 CAP HPV ISH proficiency testing surveys were reviewed. These surveys consist of well-characterized samples with known status for HR-HPV, including 1 to 2 copies, 50 to 100 copies, 300 to 500 copies, and no copies of HR-HPV per cell. RESULTS.­: Ninety-five participants submitted 1268 survey results from 20 cores. Overall, RNA ISH had a significantly higher percentage of correct responses than DNA ISH: 97.4% (450 of 462) versus 80.6% (650 of 806) (P < .001). This disparity appears to be the consequence of a superior sensitivity of RNA ISH compared to DNA ISH for samples with 1 to 2 and with 50 to 100 copies of HR-HPV per cell: 95.2% (120 of 126) versus 53.8% (129 of 240), P < .001, respectively, and 100% (89 of 89) versus 76.3% (119 of 156), P < .001, respectively. CONCLUSIONS.­: An assessment of CAP HR-HPV proficiency test performance indicates that RNA ISH shows significantly higher accuracy than DNA ISH owing to higher analytical sensitivity of RNA ISH in tumors with low (1-2 copies per cell) to intermediate (50-100 copies per cell) HR-HPV viral copy numbers. These data support the use of RNA over DNA ISH in clinical laboratories that perform HR-HPV testing as part of their testing algorithms.

2.
Nat Med ; 25(6): 911-919, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160820

RESUMO

It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches2-5. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases6-8. This includes muscle biopsies from patients with undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with mitochondrial disorders7. However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.


Assuntos
Doenças Raras/genética , Ceramidase Ácida/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Variação Genética , Humanos , Masculino , Modelos Genéticos , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Canais de Potássio/genética , RNA/sangue , RNA/genética , Processamento de RNA/genética , Doenças Raras/sangue , Análise de Sequência de RNA , Sequenciamento Completo do Exoma
3.
Arch Pathol Lab Med ; 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30969158

RESUMO

CONTEXT.­: The performance of laboratory testing has recently come under increased scrutiny as part of important and ongoing debates on regulation and reimbursement. To address this critical issue, this study compares the performance of assay methods, using either commercial kits or assays designed and implemented by single laboratories ("home brews"), including next-generation sequencing methods, on proficiency testing provided by the College of American Pathologists Molecular Oncology Committee. OBJECTIVE.­: To compare the performance of different assay methods on College of American Pathologists proficiency testing for variant analysis of 3 common oncology analytes: BRAF, EGFR, and KRAS. DESIGN.­: There were 6897 total responses across 35 different proficiency testing samples interrogating 13 different variants as well as wild-type sequences for BRAF, EGFR, and KRAS. Performance was analyzed by test method, kit manufacturer, variants tested, and preanalytic and postanalytic practices. RESULTS.­: Of 26 reported commercial kits, 23 achieved greater than 95% accuracy. Laboratory-developed tests with no kit specified demonstrated 96.8% or greater accuracy across all 3 analytes (1123 [96.8%] acceptable of 1160 total responses for BRAF; 848 [97.5%] acceptable of 870 total responses for EGFR; 942 [97.0%] acceptable of 971 total responses for KRAS). Next-generation sequencing platforms (summed across all analytes and 2 platforms) demonstrated 99.4% accuracy for these analytes (165 [99.4%] acceptable of 166 total next-generation sequencing responses). Slight differences in performance were noted among select commercial assays, dependent upon the particular design and specificity of the assay. Wide differences were noted in the lower limits of neoplastic cellularity laboratories accepted for testing. CONCLUSIONS.­: These data demonstrate the high degree of accuracy and comparable performance across all laboratories, regardless of methodology. However, care must be taken in understanding the diagnostic specificity and reported analytic sensitivity of individual methods.

4.
Arch Pathol Lab Med ; 143(8): 980-984, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30865489

RESUMO

CONTEXT.­: There has been a rapid expansion of next-generation sequencing (NGS)-based assays for the detection of somatic variants in solid tumors. However, limited data are available regarding the comparative performance of NGS and non-NGS assays using standardized samples across a large number of laboratories. OBJECTIVE.­: To compare the performance of NGS and non-NGS assays using well-characterized proficiency testing samples provided by the College of American Pathologists (CAP) Molecular Oncology Committee. A secondary goal was to compare the use of preanalytic and postanalytic practices. DESIGN.­: A total of 17 343 responses were obtained from participants in the BRAF, EGFR, KRAS, and the Multigene Tumor Panel surveys across 84 different proficiency testing samples interrogating 16 variants and 3 wild-type sequences. Performance and preanalytic/postanalytic practices were analyzed by method. RESULTS.­: While both NGS and non-NGS achieved an acceptable response rate of greater than 95%, the overall performance of NGS methods was significantly better than that of non-NGS methods for the identification of variants in BRAF (overall 97.8% versus 95.6% acceptable responses, P = .001) and EGFR (overall 98.5% versus 97.3%, P = .01) and was similar for KRAS (overall 98.8% and 97.6%, P = .10). There were specific variant differences, but in all discrepant cases, NGS methods outperformed non-NGS methods. NGS laboratories also more consistently used preanalytic and postanalytic practices suggested by the CAP checklist requirements than non-NGS laboratories. CONCLUSIONS.­: The overall analytic performance of both methods was excellent. For specific BRAF and EGFR variants, NGS outperformed non-NGS methods and NGS laboratories report superior adherence to suggested laboratory practices.

5.
Int J Lab Hematol ; 41(3): 345-352, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30811101

RESUMO

INTRODUCTION: Myelodysplastic/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T) is a rare disease in the 2016 revised World Health Organization (WHO) classification. Diagnostic criteria include the following: persistent thrombocytosis (>450 × 109 /L) with clustering of atypical megakaryocytes, refractory anemia, dyserythropoiesis with ring sideroblasts, and the presence of the spliceosome factor 3b subunit (SF3B1) mutation. It is unclear if anemia should be a required criterion for this diagnosis as cases which show all other features of MDS/MPN-RS-T but without anemia exist. METHODS: We searched for borderline cases of MDS/MPN-RS-T in which refractory anemia was absent at diagnosis in two major academic institutes. RESULTS: Three cases without anemia were identified. These cases all showed other classic morphologic and clinical features of MDS/MPN-RS-T, including thrombocytosis, atypical megakaryocytes with clustering, and characteristic SF3B1 and JAK2 V617F mutations. CONCLUSION: Given these findings, the requirement of refractory anemia as a diagnostic criterion for MDS/MPN-RS-T should be re-evaluated. Removal of refractory anemia as a diagnostic criterion would incorporate current borderline cases and extend the spectrum of this disorder.

6.
J Mol Diagn ; 21(3): 369-374, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30605766

RESUMO

Comprehensive next-generation sequencing (NGS) tests are increasingly used as first-line tests in the evaluation of patients with suspected heritable disease. Despite major technical simplifications, these assays still pose significant challenges for molecular testing laboratories. Existing professional guidelines and recommendations provide a framework for laboratories implementing such tests, but in-depth, concrete guidance is generally not provided. Consequently, there is variability in how laboratories interpret and subsequently implement these regulatory frameworks. To address the need for more detailed guidance, the College of American Pathologists with representation from the Association for Molecular Pathologists assembled a working group to create a practical resource for clinical laboratories. This initial work is focused on variant detection in the setting of inherited disease and provides structured worksheets that guide the user through the entire life cycle of an NGS test, including design, optimization, validation, and quality management with additional guidance for clinical bioinformatics. This resource is designed to be a living document that is publicly available and will be updated with user and expert feedback as the wet bench and bioinformatic landscapes continue to evolve. It is intended to facilitate the standardization of NGS testing across laboratories and therefore to improve patient care.

7.
Blood Adv ; 2(21): 2814-2828, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30373888

RESUMO

Systemic mastocytosis (SM) is a highly heterogeneous disease with indolent and aggressive forms, with the mechanisms leading to malignant transformation still remaining to be elucidated. Here, we investigated the presence and frequency of genetic variants in 34 SM patients with multilineal KIT D816V mutations. Initial screening was performed by targeted sequencing of 410 genes in DNA extracted from purified bone marrow cells and hair from 12 patients with nonadvanced SM and 8 patients with advanced SM, followed by whole-genome sequencing (WGS) in 4 cases. Somatic mutations were further investigated in another 14 patients with advanced SM. Despite the fact that no common mutation other than KIT D816V was found in WGS analyses, targeted next-generation sequencing identified 67 nonsynonymous genetic variants involving 39 genes. Half of the mutations were somatic (mostly multilineal), whereas the other half were germline variants. The presence of ≥1 multilineal somatic mutation involving genes other than KIT D816V, ≥3 germline variants, and ≥1 multilineal mutation in the SRSF2, ASXL1, RUNX1, and/or EZH2 genes (S/A/R/E genes), in addition to skin lesions, splenomegaly, thrombocytopenia, low hemoglobin levels, and increased alkaline phosphatase and ß2-microglobulin serum levels, were associated with a poorer patient outcome. However, the presence of ≥1 multilineal mutation, particularly involving S/A/R/E genes, was the only independent predictor for progression-free survival and overall survival in our cohort.

8.
Arch Pathol Lab Med ; 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376374

RESUMO

CONTEXT.­: Next-generation sequencing-based assays are being increasingly used in the clinical setting for the detection of somatic variants in solid tumors, but limited data are available regarding the interlaboratory performance of these assays. OBJECTIVE.­: To examine proficiency testing data from the initial College of American Pathologists (CAP) Next-Generation Sequencing Solid Tumor survey to report on laboratory performance. DESIGN.­: CAP proficiency testing results from 111 laboratories were analyzed for accuracy and associated assay performance characteristics. RESULTS.­: The overall accuracy observed for all variants was 98.3%. Rare false-negative results could not be attributed to sequencing platform, selection method, or other assay characteristics. The median and average of the variant allele fractions reported by the laboratories were within 10% of those orthogonally determined by digital polymerase chain reaction for each variant. The median coverage reported at the variant sites ranged from 1922 to 3297. CONCLUSIONS.­: Laboratories demonstrated an overall accuracy of greater than 98% with high specificity when examining 10 clinically relevant somatic single-nucleotide variants with a variant allele fraction of 15% or greater. These initial data suggest excellent performance, but further ongoing studies are needed to evaluate the performance of lower variant allele fractions and additional variant types.

9.
Arch Pathol Lab Med ; 142(10): 1242-1253, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29504834

RESUMO

PURPOSE.­: Clinical use of analytical tests to assess genomic variants in circulating tumor DNA (ctDNA) is increasing. This joint review from the American Society of Clinical Oncology and the College of American Pathologists summarizes current information about clinical ctDNA assays and provides a framework for future research. METHODS.­: An Expert Panel conducted a literature review on the use of ctDNA assays for solid tumors, including preanalytical variables, analytical validity, interpretation and reporting, and clinical validity and utility. RESULTS.­: The literature search identified 1338 references. Of those, 390, plus 31 references supplied by the Expert Panel, were selected for full-text review. There were 77 articles selected for inclusion. CONCLUSIONS.­: The evidence indicates that testing for ctDNA is optimally performed on plasma collected in cell stabilization or EDTA tubes, with EDTA tubes processed within 6 hours of collection. Some ctDNA assays have demonstrated clinical validity and utility with certain types of advanced cancer; however, there is insufficient evidence of clinical validity and utility for the majority of ctDNA assays in advanced cancer. Evidence shows discordance between the results of ctDNA assays and genotyping tumor specimens, and supports tumor tissue genotyping to confirm undetected results from ctDNA tests. There is no evidence of clinical utility and little evidence of clinical validity of ctDNA assays in early-stage cancer, treatment monitoring, or residual disease detection. There is no evidence of clinical validity or clinical utility to suggest that ctDNA assays are useful for cancer screening, outside of a clinical trial. Given the rapid pace of research, reevaluation of the literature will shortly be required, along with the development of tools and guidance for clinical practice.

10.
J Clin Oncol ; 36(16): 1631-1641, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29504847

RESUMO

Purpose Clinical use of analytical tests to assess genomic variants in circulating tumor DNA (ctDNA) is increasing. This joint review from ASCO and the College of American Pathologists summarizes current information about clinical ctDNA assays and provides a framework for future research. Methods An Expert Panel conducted a literature review on the use of ctDNA assays for solid tumors, including pre-analytical variables, analytical validity, interpretation and reporting, and clinical validity and utility. Results The literature search identified 1,338 references. Of those, 390, plus 31 references supplied by the Expert Panel, were selected for full-text review. There were 77 articles selected for inclusion. Conclusion The evidence indicates that testing for ctDNA is optimally performed on plasma collected in cell stabilization or EDTA tubes, with EDTA tubes processed within 6 hours of collection. Some ctDNA assays have demonstrated clinical validity and utility with certain types of advanced cancer; however, there is insufficient evidence of clinical validity and utility for the majority of ctDNA assays in advanced cancer. Evidence shows discordance between the results of ctDNA assays and genotyping tumor specimens and supports tumor tissue genotyping to confirm undetected results from ctDNA tests. There is no evidence of clinical utility and little evidence of clinical validity of ctDNA assays in early-stage cancer, treatment monitoring, or residual disease detection. There is no evidence of clinical validity and clinical utility to suggest that ctDNA assays are useful for cancer screening, outside of a clinical trial. Given the rapid pace of research, re-evaluation of the literature will shortly be required, along with the development of tools and guidance for clinical practice.

11.
Am J Hum Genet ; 102(3): 494-504, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29478781

RESUMO

ATP synthase, H+ transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F1FO ATP synthase and subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.

12.
JAMA Oncol ; 4(6): 838-841, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29242895

RESUMO

Importance: The debate about the role of the Food and Drug Administration (FDA) in the regulation of laboratory-developed tests (LDTs) has focused attention on the analytical performance of all clinical laboratory testing. This study provides data comparing the performance of LDTs and FDA-approved companion diagnostics (FDA-CDs) in proficiency testing (PT) provided by the College of American Pathologists Molecular Oncology Committee. Objective: To compare the analytical performance of LDTs and FDA-CDs on well-characterized PT samples and to compare the practice characteristics of laboratories using these assays. Design, Setting, and Participants: This comparison of PT responses examines the performance of laboratories participating in the College of American Pathologists PT for 3 oncology analytes for which both FDA-CDs and LDTs are used: BRAF, EGFR, and KRAS. A total of 6897 PT responses were included: BRAF (n = 2524; 14 PT samples), EGFR (n = 2216; 11 PT samples), and KRAS (n = 2157, 10 PT samples). US Food and Drug Administration companion diagnostics and LDTs are compared for both accuracy and preanalytic practices of the laboratories. Main Outcomes and Measures: As per the College of American Pathologists PT standards, results were scored and the percentages of acceptable responses for each analyte were compared. These were also broken down by the specific variants tested, by kit manufacturer for laboratories using commercial reagents, and by preanalytic practices. Results: From analysis of 6897 PT responses, this study demonstrates that both LDTs and FDA-CDs have excellent performance overall, with both test types exceeding 97% accuracy for all 3 genes (BRAF, EGFR, and KRAS) combined. Rare variant-specific differences did not consistently favor LDTs or FDA-CDs. Additionally, more than 60% of participants using an FDA-CD reported adapting their assay from the approved procedure to allow for a greater breadth of sample types, minimum tumor content, and instrumentation, changing the classification of their assay from FDA-CD to LDT. Conclusions: This study demonstrates the high degree of accuracy and comparable performance of both LDTs and FDA-CDs for 3 oncology analytes. More significantly, the majority of laboratories using FDA-CDs have modified the scope of their assay to allow for more clinical practice variety, rendering them LDTs. These findings support both the excellent and equivalent performance of both LDTs and FDA-CDs in clinical diagnostic testing.

13.
Genet Med ; 20(1): 159-163, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28640241

RESUMO

PurposeCurrent clinical genomics assays primarily utilize short-read sequencing (SRS), but SRS has limited ability to evaluate repetitive regions and structural variants. Long-read sequencing (LRS) has complementary strengths, and we aimed to determine whether LRS could offer a means to identify overlooked genetic variation in patients undiagnosed by SRS.MethodsWe performed low-coverage genome LRS to identify structural variants in a patient who presented with multiple neoplasia and cardiac myxomata, in whom the results of targeted clinical testing and genome SRS were negative.ResultsThis LRS approach yielded 6,971 deletions and 6,821 insertions > 50 bp. Filtering for variants that are absent in an unrelated control and overlap a disease gene coding exon identified three deletions and three insertions. One of these, a heterozygous 2,184 bp deletion, overlaps the first coding exon of PRKAR1A, which is implicated in autosomal dominant Carney complex. RNA sequencing demonstrated decreased PRKAR1A expression. The deletion was classified as pathogenic based on guidelines for interpretation of sequence variants.ConclusionThis first successful application of genome LRS to identify a pathogenic variant in a patient suggests that LRS has significant potential for the identification of disease-causing structural variation. Larger studies will ultimately be required to evaluate the potential clinical utility of LRS.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Variação Genética , Genoma Humano , Genômica , Análise de Sequência de DNA , Criança , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Ecocardiografia , Genômica/métodos , Humanos , Masculino , Fenótipo , Análise de Sequência de DNA/métodos , Deleção de Sequência
14.
Arch Pathol Lab Med ; 141(12): 1679-1685, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29028368

RESUMO

CONTEXT: - Detection of acquired variants in cancer is a paradigm of precision medicine, yet little has been reported about clinical laboratory practices across a broad range of laboratories. OBJECTIVE: - To use College of American Pathologists proficiency testing survey results to report on the results from surveys on next-generation sequencing-based oncology testing practices. DESIGN: - College of American Pathologists proficiency testing survey results from more than 250 laboratories currently performing molecular oncology testing were used to determine laboratory trends in next-generation sequencing-based oncology testing. RESULTS: - These presented data provide key information about the number of laboratories that currently offer or are planning to offer next-generation sequencing-based oncology testing. Furthermore, we present data from 60 laboratories performing next-generation sequencing-based oncology testing regarding specimen requirements and assay characteristics. The findings indicate that most laboratories are performing tumor-only targeted sequencing to detect single-nucleotide variants and small insertions and deletions, using desktop sequencers and predesigned commercial kits. Despite these trends, a diversity of approaches to testing exists. CONCLUSIONS: - This information should be useful to further inform a variety of topics, including national discussions involving clinical laboratory quality systems, regulation and oversight of next-generation sequencing-based oncology testing, and precision oncology efforts in a data-driven manner.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Humanos , Ensaio de Proficiência Laboratorial/métodos , Ensaio de Proficiência Laboratorial/normas , Ensaio de Proficiência Laboratorial/tendências , Oncologia/normas , Patologia Clínica/normas , Medicina de Precisão/métodos , Medicina de Precisão/normas , Medicina de Precisão/tendências , Sociedades Médicas , Inquéritos e Questionários , Estados Unidos
15.
Nature ; 550(7675): 239-243, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29022581

RESUMO

Rare genetic variants are abundant in humans and are expected to contribute to individual disease risk. While genetic association studies have successfully identified common genetic variants associated with susceptibility, these studies are not practical for identifying rare variants. Efforts to distinguish pathogenic variants from benign rare variants have leveraged the genetic code to identify deleterious protein-coding alleles, but no analogous code exists for non-coding variants. Therefore, ascertaining which rare variants have phenotypic effects remains a major challenge. Rare non-coding variants have been associated with extreme gene expression in studies using single tissues, but their effects across tissues are unknown. Here we identify gene expression outliers, or individuals showing extreme expression levels for a particular gene, across 44 human tissues by using combined analyses of whole genomes and multi-tissue RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project v6p release. We find that 58% of underexpression and 28% of overexpression outliers have nearby conserved rare variants compared to 8% of non-outliers. Additionally, we developed RIVER (RNA-informed variant effect on regulation), a Bayesian statistical model that incorporates expression data to predict a regulatory effect for rare variants with higher accuracy than models using genomic annotations alone. Overall, we demonstrate that rare variants contribute to large gene expression changes across tissues and provide an integrative method for interpretation of rare variants in individual genomes.


Assuntos
Perfilação da Expressão Gênica , Variação Genética/genética , Especificidade de Órgãos/genética , Teorema de Bayes , Feminino , Genoma Humano/genética , Genômica , Genótipo , Humanos , Masculino , Modelos Genéticos , Análise de Sequência de RNA
16.
Cancer Genet ; 216-217: 10-15, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29025582

RESUMO

FLT3 fusions are associated with myeloid and lymphoid neoplasms with eosinophilia. We describe a patient presenting with clinicopathologic features of both chronic eosinophilic leukemia, not otherwise specified (CEL, NOS) and systemic mastocytosis (SM). The bone marrow demonstrated a myeloproliferative neoplasm with eosinophilia and aggregates of atypical mast cells. Cytogenetic analysis revealed a t(13;14)(q12;q32), which was subsequently molecularly characterized as a novel TRIP11-FLT3 rearrangement. A KIT D816V mutation was also identified. The patient rapidly transformed to T-lymphoblastic leukemia/lymphoma and expired shortly after diagnosis. This is the fifth FLT3 fusion gene described in the literature; the presence of both myeloid and lymphoid neoplasms implicates involvement of an early hematopoietic progenitor by rearranged FLT3. We suggest that leukemias and lymphomas with FLT3 fusion genes exhibit similar clinicopathologic features to, and should be included in, the WHO category of "Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR1, or with PCM1-JAK2."


Assuntos
Eosinofilia/complicações , Linfoma/complicações , Linfoma/genética , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/genética , Proteínas de Fusão Oncogênica/genética , Tirosina Quinase 3 Semelhante a fms/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Arch Pathol Lab Med ; 140(10): 1085-91, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27388684

RESUMO

CONTEXT: -Most current proficiency testing challenges for next-generation sequencing assays are methods-based proficiency testing surveys that use DNA from characterized reference samples to test both the wet-bench and bioinformatics/dry-bench aspects of the tests. Methods-based proficiency testing surveys are limited by the number and types of mutations that either are naturally present or can be introduced into a single DNA sample. OBJECTIVE: -To address these limitations by exploring a model of in silico proficiency testing in which sequence data from a single well-characterized specimen are manipulated electronically. DESIGN: -DNA from the College of American Pathologists reference genome was enriched using the Illumina TruSeq and Life Technologies AmpliSeq panels and sequenced on the MiSeq and Ion Torrent platforms, respectively. The resulting data were mutagenized in silico and 26 variants, including single-nucleotide variants, deletions, and dinucleotide substitutions, were added at variant allele fractions (VAFs) from 10% to 50%. Participating clinical laboratories downloaded these files and analyzed them using their clinical bioinformatics pipelines. RESULTS: -Laboratories using the AmpliSeq/Ion Torrent and/or the TruSeq/MiSeq participated in the 2 surveys. On average, laboratories identified 24.6 of 26 variants (95%) overall and 21.4 of 22 variants (97%) with VAFs greater than 15%. No false-positive calls were reported. The most frequently missed variants were single-nucleotide variants with VAFs less than 15%. Across both challenges, reported VAF concordance was excellent, with less than 1% median absolute difference between the simulated VAF and mean reported VAF. CONCLUSIONS: -The results indicate that in silico proficiency testing is a feasible approach for methods-based proficiency testing, and demonstrate that the sensitivity and specificity of current next-generation sequencing bioinformatics across clinical laboratories are high.


Assuntos
Simulação por Computador , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ensaio de Proficiência Laboratorial/métodos , Patologia Clínica/métodos , Alelos , DNA/química , DNA/genética , Estudos de Viabilidade , Frequência do Gene , Testes Genéticos/métodos , Genoma Humano/genética , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
18.
Mod Pathol ; 29(10): 1212-20, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27338637

RESUMO

Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies.


Assuntos
Linfoma de Zona Marginal Tipo Células B/genética , Linfoma Folicular/genética , Mutação , Adolescente , Biomarcadores Tumorais/genética , Criança , Análise Mutacional de DNA , Feminino , Humanos , Masculino
19.
Am J Clin Pathol ; 143(4): 527-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25780004

RESUMO

OBJECTIVES: We sought to determine the significance of bright CD45 expression on mast cells in cases of systemic mastocytosis vs mast cells in bone marrows uninvolved by systemic mastocytosis and compare this CD45 expression with CD25 and CD2 expression on mast cells. METHODS: Multiparameter flow cytometry was performed on 31 cases of systemic mastocytosis and 70 bone marrow cases that were not involved by systemic mastocytosis. Bright expression of CD45 was defined as more than 20% of CD117+ mast cells showing brighter CD45 expression than the average expression level of lymphocytes. RESULTS: Mast cells with bright CD45 expression were seen in 26 systemic mastocytosis cases and three bone marrows uninvolved by systemic mastocytosis (sensitivity, 84%; specificity, 96%). CD25 alone had a greater sensitivity (100%) but lower specificity (93%) compared with bright CD45 for identifying abnormal mast cells, while CD2 alone had lower sensitivity but higher specificity. To reach a specificity of 100%, CD25 together with bright CD45 on mast cells was the optimal combination to detect cases of systemic mastocytosis. CONCLUSIONS: A combination of bright CD45 and CD25 appears to specifically identify abnormal mast cells in cases of systemic mastocytosis. Further studies will be necessary to confirm these results.


Assuntos
Antígenos Comuns de Leucócito/metabolismo , Mastócitos/metabolismo , Mastocitose Sistêmica/metabolismo , Mastocitose Sistêmica/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Antígenos CD2/metabolismo , Criança , Pré-Escolar , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Masculino , Mastócitos/patologia , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-kit/imunologia , Sensibilidade e Especificidade , Adulto Jovem
20.
Arch Pathol Lab Med ; 139(4): 481-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25152313

RESUMO

CONTEXT: The higher throughput and lower per-base cost of next-generation sequencing (NGS) as compared to Sanger sequencing has led to its rapid adoption in clinical testing. The number of laboratories offering NGS-based tests has also grown considerably in the past few years, despite the fact that specific Clinical Laboratory Improvement Amendments of 1988/College of American Pathologists (CAP) laboratory standards had not yet been developed to regulate this technology. OBJECTIVE: To develop a checklist for clinical testing using NGS technology that sets standards for the analytic wet bench process and for bioinformatics or "dry bench" analyses. As NGS-based clinical tests are new to diagnostic testing and are of much greater complexity than traditional Sanger sequencing-based tests, there is an urgent need to develop new regulatory standards for laboratories offering these tests. DESIGN: To develop the necessary regulatory framework for NGS and to facilitate appropriate adoption of this technology for clinical testing, CAP formed a committee in 2011, the NGS Work Group, to deliberate upon the contents to be included in the checklist. Results . -A total of 18 laboratory accreditation checklist requirements for the analytic wet bench process and bioinformatics analysis processes have been included within CAP's molecular pathology checklist (MOL). CONCLUSIONS: This report describes the important issues considered by the CAP committee during the development of the new checklist requirements, which address documentation, validation, quality assurance, confirmatory testing, exception logs, monitoring of upgrades, variant interpretation and reporting, incidental findings, data storage, version traceability, and data transfer confidentiality.


Assuntos
Técnicas de Laboratório Clínico/métodos , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Patologia Clínica/métodos , Técnicas de Laboratório Clínico/normas , Biologia Computacional/métodos , Testes Genéticos/normas , Guias como Assunto/normas , Humanos , Padrões de Referência , Reprodutibilidade dos Testes , Sociedades Médicas , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA