Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Rep Prog Phys ; 75(4): 046501, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22790509


A superconductor with a gap in the density of states or a quantum dot with discrete energy levels is a central building block in realizing an electronic on-chip cooler. They can work as energy filters, allowing only hot quasiparticles to tunnel out from the electrode to be cooled. This principle has been employed experimentally since the early 1990s in investigations and demonstrations of micrometre-scale coolers at sub-kelvin temperatures. In this paper, we review the basic experimental conditions in realizing the coolers and the main practical issues that are known to limit their performance. We give an update of experiments performed on cryogenic micrometre-scale coolers in the past five years.

Nature ; 483(7391): 576-9, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22460903


Understanding the dynamics of correlated many-body quantum systems is a challenge for modern physics. Owing to the simplicity of their Hamiltonians, (4)He (bosons) and (3)He (fermions) have served as model systems for strongly interacting quantum fluids, with substantial efforts devoted to their understanding. An important milestone was the direct observation of the collective phonon-roton mode in liquid (4)He by neutron scattering, verifying Landau's prediction and his fruitful concept of elementary excitations. In a Fermi system, collective density fluctuations (known as 'zero-sound' in (3)He, and 'plasmons' in charged systems) and incoherent particle-hole excitations are observed. At small wavevectors and energies, both types of excitation are described by Landau's theory of Fermi liquids. At higher wavevectors, the collective mode enters the particle-hole band, where it is strongly damped. The dynamics of Fermi liquids at high wavevectors was thus believed to be essentially incoherent. Here we report inelastic neutron scattering measurements of a monolayer of liquid (3)He, observing a roton-like excitation. We find that the collective density mode reappears as a well defined excitation at momentum transfers larger than twice the Fermi momentum. We thus observe unexpected collective behaviour of a Fermi many-body system in the regime beyond the scope of Landau's theory. A satisfactory interpretation of the measured spectra is obtained using a dynamic many-body theory.

Phys Rev Lett ; 102(20): 200801, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19519012


We demonstrate quantum-limited electronic refrigeration of a metallic island in a low-temperature microcircuit. We show that matching the impedance of the circuit enables refrigeration at a distance, of about 50 microm in our case, through superconducting leads with a cooling power determined by the quantum of thermal conductance. In a reference sample with a mismatched circuit this effect is absent. Our results are consistent with the concept of electromagnetic heat transport. We observe and analyze the crossover between electromagnetic and quasiparticle heat flux in a superconductor.

Phys Rev Lett ; 101(20): 206801, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19113365


We describe the concept and experimental demonstration of primary thermometry based on a four-probe measurement of a single tunnel junction embedded within four arrays of junctions. We show that in this configuration random sample specific and environment-related errors can be avoided. This method relates temperature directly to Boltzmann constant, which will form the basis of the definition of temperature and realization of official temperature scales in the future.

Phys Rev Lett ; 99(2): 027203, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17678252


We present experiments on a superconductor-normal-metal electron refrigerator in a regime where single-electron charging effects are significant. The system functions as a heat transistor; i.e., the heat flux out from the normal-metal island can be controlled with a gate voltage. A theoretical model developed within the framework of single-electron tunneling provides a full quantitative agreement with the experiment. This work serves as the first experimental observation of Coulombic control of heat transfer and, in particular, of refrigeration in a mesoscopic system.

Nature ; 444(7116): 187-90, 2006 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17093446


The thermal conductance of a single channel is limited by its unique quantum value G(Q), as was shown theoretically in 1983. This result closely resembles the well-known quantization of electrical conductance in ballistic one-dimensional conductors. Interestingly, all particles-irrespective of whether they are bosons or fermions-have the same quantized thermal conductance when they are confined within dimensions that are small compared to their characteristic wavelength. The single-mode heat conductance is particularly relevant in nanostructures. Quantized heat transport through submicrometre dielectric wires by phonons has been observed, and it has been predicted to influence cooling of electrons in metals at very low temperatures due to electromagnetic radiation. Here we report experimental results showing that at low temperatures heat is transferred by photon radiation, when electron-phonon as well as normal electronic heat conduction is frozen out. We study heat exchange between two small pieces of normal metal, connected to each other only via superconducting leads, which are ideal insulators against conventional thermal conduction. Each superconducting lead is interrupted by a switch of electromagnetic (photon) radiation in the form of a DC-SQUID (a superconducting loop with two Josephson tunnel junctions). We find that the thermal conductance between the two metal islands mediated by photons indeed approaches the expected quantum limit of G(Q) at low temperatures. Our observation has practical implications-for example, for the performance and design of ultra-sensitive bolometers (detectors of far-infrared light) and electronic micro-refrigerators, whose operation is largely dependent on weak thermal coupling between the device and its environment.