Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS One ; 17(1): e0261853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025926

RESUMO

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is a transparent and accessible qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that direct RT-PCR assay methods can be clearly translated across sites utilizing readily available equipment and expertise and are thus a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.

2.
J Immunoassay Immunochem ; : 1-8, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996333

RESUMO

Avian metaavulavirus 2 (AMAV-2) previously known as the avian paramyxovirus-2 causes mild to severe respiratory disease, reduced hatchability and infertility of eggs, including increase in white-shelled eggs in chickens and Turkey breeders. When exacerbated by secondary pathogens and environmental stresses, infection is more severe leading to significant economic losses. This study was conducted to determine, if any, the presence of antibodies to Avian metaavulavirus 2 (AMAV-2) in peri-domestic birds in Bauchi State, Nigeria. In all, one hundred sera samples from pigeons (n = 10) and doves (n = 90 were collected in Bauchi, Nigeria. Based on hemagglutination-inhibition (HI) test, overall seroprevalence of 27.0% (27/100) was recorded. In pigeon, the seroprevalence was 80.0% while 21.1% was recorded for dove with HI antibody titers ranging from 3log2 to 8log2. There was statistical significance obtained between dove and pigeon sera tested (p < .05). Until now and to the best of our knowledge, there are no reports on AMAV-2 in poultry or wild birds in Nigeria. This study, thus, provides preliminary information on AMAV-2 seroprevalence in Nigerian peri-domestic birds. The need to conduct further studies in other avian species and wild birds in Nigeria is highlighted.

3.
Transbound Emerg Dis ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34812571

RESUMO

Porcine circovirus-2 (PCV-2) is associated with several disease syndromes in domestic pigs that have a significant impact on global pig production and health. Currently, little is known about the status of PCV-2 in Africa. In this study, a total of 408 archived DNA samples collected from pigs in Burkina Faso, Cameroon, Cape Verde, Ethiopia, the Democratic Republic of the Congo, Mozambique, Nigeria, Senegal, Tanzania and Zambia between 2000 and 2018 were screened by PCR for the presence of PCV-2. Positive amplicons of the gene encoding the viral capsid protein (ORF2) were sequenced to determine the genotypes circulating in each country. Four of the nine currently known genotypes of PCV-2 were identified (i.e. PCV-2a, PCV-2b, PCV-2d and PCV-2 g) with more than one genotype being identified in Burkina Faso, Ethiopia, Nigeria, Mozambique, Senegal and Zambia. Additionally, a phylogeographic analysis which included 38 additional ORF2 gene sequences of PCV-2s previously identified in Mozambique, Namibia and South Africa from 2014 to 2016 and 2019 to 2020 and available in public databases, demonstrated the existence of several African-specific clusters and estimated the approximate time of introduction of PCV-2s into Africa from other continents. This is the first in-depth study of PCV-2 in Africa and it has important implications for pig production at both the small-holder and commercial farm level on the continent.

4.
Viruses ; 13(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34452311

RESUMO

Since 2006, multiple outbreaks of avian influenza (AI) have been reported in Nigeria involving different subtypes. Surveillance and molecular epidemiology have revealed the vital role of live bird markets (LBMs) in the dissemination of AI virus to commercial poultry farms. To better understand the ecology and epidemiology of AI in Nigeria, we performed whole-genome sequencing of nineteen H9N2 viruses recovered, from apparently healthy poultry species, during active surveillance conducted in nine LBMs across Nigeria in 2019. Analyses of the HA gene segment of these viruses showed that the H9N2 strains belong to the G1 lineage, which has zoonotic potential, and are clustered with contemporary H9N2 identified in Africa between 2016 and 2020. We observed two distinct clusters of H9N2 viruses in Nigeria, suggesting different introductions into the country. In view of the zoonotic potential of H9N2 and the co-circulation of multiple subtypes of AI virus in Nigeria, continuous monitoring of the LBMs across the country and molecular characterization of AIVs identified is advocated to mitigate economic losses and public health threats.

5.
Front Cell Infect Microbiol ; 11: 654813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123871

RESUMO

COVID-19 is a zoonotic disease with devastating economic and public health impacts globally. Being a novel disease, current research is focused on a clearer understanding of the mechanisms involved in its pathogenesis and viable therapeutic strategies. Oxidative stress and inflammation are intertwined processes that play roles in disease progression and response to therapy via interference with multiple signaling pathways. The redox status of a host cell is an important factor in viral entry due to the unique conditions required for the conformational changes that ensure the binding and entry of a virus into the host cell. Upon entry into the airways, viral replication occurs and the innate immune system responds by activating macrophage and dendritic cells which contribute to inflammation. This review examines available literature and proposes mechanisms by which oxidative stress and inflammation could contribute to COVID-19 pathogenesis. Further, certain antioxidants currently undergoing some form of trial in COVID-19 patients and the corresponding required research gaps are highlighted to show how targeting oxidative stress and inflammation could ameliorate COVID-19 severity.


Assuntos
Antioxidantes , COVID-19 , Antioxidantes/uso terapêutico , Humanos , Estresse Oxidativo , SARS-CoV-2 , Internalização do Vírus
7.
medRxiv ; 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33880478

RESUMO

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is an open-access qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that open-access, direct RT-PCR assays are a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.

8.
Transbound Emerg Dis ; 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33480188

RESUMO

Among recurrent sanitary emergencies able to spread rapidly worldwide, avian influenza is one of the main constraints for animal health and food security. In West Africa, Nigeria has been experiencing repeated outbreaks of different strains of avian influenza virus (AIV) since 2006 and is also recognized as a hot spot in the region for the introduction of emerging strains by migratory wild birds. Here, we generated complete genomes of 20 highly pathogenic avian influenza (HPAI) H5N8 viruses collected during active surveillance in Nigerian live bird markets (LBM) and from outbreaks reported in the country between 2016 and 2019. Phylogenetic analysis reveals that the Nigerian viruses cluster into four separate genetic groups within HPAI H5 clade 2.3.4.4b. The first group includes 2016-2017 Nigerian viruses with high genetic similarity to H5N8 viruses detected in Central African countries, while the second includes Nigerian viruses collected both in LBM and poultry farms (2018-2019), as well as in Cameroon, Egypt and Siberia. A natural reassortant strain identified in 2019 represents the third group: H5N8 viruses with the same gene constellation were identified in 2018 in South Africa. Finally, the fourth introduction represents the first detection in the African continent of the H5N6 subtype, which is related to European viruses. Bayesian phylogeographic analyses confirmed that the four introductions originated from different sources and provide evidence of the virus spread within Nigeria, as well as diffusion beyond its borders. The multiple epidemiological links between Nigeria, Central and Southern African countries highlight the need for harmonized and coordinated surveillance system to control AIV impact. Improved surveillance at the Wetlands, LBMs and early warning of outbreaks are crucial for prevention and control of AIV, which can be potentially zoonotic and be a threat to human health.

9.
Transbound Emerg Dis ; 68(3): 1253-1262, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32770642

RESUMO

Since November 2018, several countries in West and Central Africa have reported mortalities in donkeys and horses. Specifically, more than 66,000 horses and donkeys have succumbed to disease in Burkina Faso, Chad, Cameroon, The Gambia, Ghana, Mali, Niger, Nigeria, and Senegal. Strangles caused by Streptococcus equi subsp equi, African Horse Sickness (AHS) virus, and Equine influenza virus (EIV) were all suspected as potential causative agents. This study reports the identification of EIV in field samples collected in Niger and Senegal. Phylogenetic analysis of the hemagglutinin and neuraminidase genes revealed that the identified viruses belonged to clade 1 of the Florida sublineage and were very similar to viruses identified in Nigeria in 2019. Interestingly, they were also more similar to EIVs from recent outbreaks in South America than to those in Europe and the USA. This is one of the first reports providing detailed description and characterization of EIVs in West and Central Africa region.


Assuntos
Surtos de Doenças/veterinária , Doenças dos Cavalos/epidemiologia , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/veterinária , Animais , Genes Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Cavalos , Vírus da Influenza A Subtipo H3N8/classificação , Neuraminidase/genética , Níger/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Senegal/epidemiologia
10.
Vet Microbiol ; 248: 108820, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32891950

RESUMO

In December 2018, suspected outbreaks of equine influenza (EI) were observed in donkeys in Sokoto State, in the extreme northwest of Nigeria bordering the Republic of the Niger. Equine influenza virus (EIV) subtype H3N8 was the etiologic agent identified in the outbreaks using real-time RT-qPCR and sequencing of both the partial haemagglutinin (HA) gene and the complete genome. Since then the H3N8 virus spread to 7 of the 19 northern states of Nigeria, where it affected both donkeys and horses. Phylogenetic analysis of the partial and complete HA gene revealed the closest nucleotide similarity (99.7%) with EIVs belonging to the Florida clade 1 (Fc-1) of the American lineage isolated in 2018 from Argentina and Chile. In total, 80 amino acid substitutions were observed in the viral proteins when compared to the OIE-recommended Fc-1 vaccine strains. The HA and neuraminidase proteins respectively had 13 and 16 amino acid substitutions. This study represents the first reported outbreak of EI caused by an Fc-1 virus in Nigeria and in the West Africa sub-region. Based on this report, extensive disease surveillance in equids is required to establish the circulating lineages and design an effective control strategy to protect the considerable population of horses and donkeys in the country.


Assuntos
Surtos de Doenças/veterinária , Doenças dos Cavalos/mortalidade , Vírus da Influenza A Subtipo H3N8/patogenicidade , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/veterinária , África Ocidental/epidemiologia , Animais , Genoma Viral , Doenças dos Cavalos/virologia , Cavalos , Nigéria/epidemiologia , Filogenia , Proteínas Virais/genética
12.
Med Hypotheses ; 144: 109925, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32544740

RESUMO

In the present study, we used the potential of bioinformatics and computational analysis to predict the existence and biological relevance of zinc finger (ZF) motifs in heamagglutinin (HA) protein of Avian Influenza (AI) virus. Sequence data of Avian Influenza (AI) viruses were retrieved from accessible databases (GenBank, GISAID, IRD) and analyzed for the existence, as well as functional prediction of the putative zinc finger or ''zinc-binding'' motif(s) of HA protein. It is hypothesized that the ZF motif(s) in HA of AI virus can be used as a ''novel'' biomarker for categorization of the virus and/or its virulence. As a model for analysis, we used the H5 subtypes of highly pathogenic, non-pathogenic and low pathogenic avian influenza (HPAI, NPAI and LPAI) viruses of H5N1 and H5N2 of avian and human origins. Interestingly, our method of characterization using the zinc-finger agrees with the existing classification in distinguishing between highly pathogenic and non-pathogenic or low pathogenic subtypes. The new method also clearly distinguished between low and non-pathogenic strains of H5N2 and H5N1 which are indistinguishable by the existing method that utilizes the sequence of the polybasic amino acids of the proteolytic cleavage site for pathogenicity. It is hypothesized that zinc through the activities of zinc-binding proteins modulates the virulence property of the viral subtypes. Our observation further revealed that only the HA protein among the eight encoded proteins of influenza viruses contain high numbers of Cys-His residues. It is expected that the information gathered from the analysis of the data will be useful to generate more research hypotheses/designs that will give further insight towards the identification and control of avian influenza virus through the molecular manipulation of zinc finger motifs present in viral HA protein.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Influenza Aviária , Animais , Galinhas , Hemaglutininas , Humanos , Virulência , Zinco
14.
Emerg Microbes Infect ; 9(1): 886-888, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32312185

RESUMO

Since 2013, highly pathogenic avian influenza (HPAI) subtype H5N6 (clade 2.3.4.4) has been reported in wild birds and poultry in Asia as well as in other parts of the globe. In Africa, information on the presence of this virus subtype is lacking. This study reports the first detection of a HPAI (H5N6) virus (clade 2.3.4.4b) in a duck from a live bird market in Nigeria, whose genome is closely related to the European 2017-2018 H5N6 viruses, indricating a recent virus introduction into the African continent.


Assuntos
Animais Selvagens/virologia , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Filogenia , Doenças das Aves Domésticas/virologia , Aves Domésticas/virologia , Animais , Surtos de Doenças/veterinária , Patos/virologia , Genoma Viral , Vírus da Influenza A/classificação , Influenza Aviária/virologia , Nigéria/epidemiologia , Doenças das Aves Domésticas/epidemiologia
15.
Pan Afr Med J ; 35(Suppl 2): 52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33623577

RESUMO

The severity of the novel 2019 Coronavirus leaves much trepidation, anxiety and desperate measures are taken to curb the pandemic. Such measures according to WHO include hygiene, isolation and social distancing. If clustering of people is considered a major catalyst in the spread of corona virus, social distancing is therefore important for its control. But compliance has remained a concern, especially in Nigeria. We examine the concept and global trends in social distancing in infectious disease control and the negative feedback on public health as revealed in current body of knowledge from news media and other literatures. The risks associated with failure to comply with social distancing as a result of ignorance or defiance are highlighted.


Assuntos
COVID-19/prevenção & controle , Pandemias , Distanciamento Físico , Saúde Pública , Humanos , Nigéria , Índice de Gravidade de Doença
16.
Nat Commun ; 10(1): 5310, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757953

RESUMO

The role of Africa in the dynamics of the global spread of a zoonotic and economically-important virus, such as the highly pathogenic avian influenza (HPAI) H5Nx of the Gs/GD lineage, remains unexplored. Here we characterise the spatiotemporal patterns of virus diffusion during three HPAI H5Nx intercontinental epidemic waves and demonstrate that Africa mainly acted as an ecological sink of the HPAI H5Nx viruses. A joint analysis of host dynamics and continuous spatial diffusion indicates that poultry trade as well as wild bird migrations have contributed to the virus spreading into Africa, with West Africa acting as a crucial hotspot for virus introduction and dissemination into the continent. We demonstrate varying paths of avian influenza incursions into Africa as well as virus spread within Africa over time, which reveal that virus expansion is a complex phenomenon, shaped by an intricate interplay between avian host ecology, virus characteristics and environmental variables.


Assuntos
Influenza Aviária/transmissão , Influenza Humana/transmissão , Doenças das Aves Domésticas/transmissão , África , África Ocidental , Animais , Humanos , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A/genética , Influenza Aviária/economia , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/economia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/economia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia
17.
Arch Virol ; 164(8): 2031-2047, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31123963

RESUMO

Newcastle disease virus (NDV) has a wide avian host range and a high degree of genetic variability, and virulent strains cause Newcastle disease (ND), a worldwide concern for poultry health. Although NDV has been studied in Nigeria, genetic information about the viruses involved in the endemicity of the disease and the transmission that likely occurs at the poultry-wildlife interface is still largely incomplete. Next-generation and Sanger sequencing was performed to provide complete (n = 73) and partial genomic sequence data (n = 38) for NDV isolates collected from domestic and wild birds in Nigeria during 2002-2015, including the first complete genome sequences of genotype IV and subgenotype VIh from the African continent. Phylogenetic analysis revealed that viruses of seven different genotypes circulated in that period, demonstrating high genetic diversity of NDV for a single country. In addition, a high degree of similarity between NDV isolates from domestic and wild birds was observed, suggesting that spillovers had occurred, including to three species that had not previously been shown to be susceptible to NDV infection. Furthermore, the first spillover of a mesogenic Komarov vaccine virus is documented, suggesting a previous spillover and evolution of this virus. The similarities between viruses from poultry and multiple bird species and the lack of evidence for host adaptation in codon usage suggest that transmission of NDV between poultry and non-poultry birds occurred recently. This is especially significant when considering that some viruses were isolated from species of conservation concern. The high diversity of NDV observed in both domestic and wild birds in Nigeria emphasizes the need for active surveillance and epidemiology of NDV in all bird species.


Assuntos
Animais Selvagens/virologia , Aves/virologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Animais , Variação Genética/genética , Genômica/métodos , Genótipo , Nigéria , Filogenia , Aves Domésticas/virologia , Sequenciamento Completo do Genoma/métodos
18.
Avian Pathol ; 48(5): 406-415, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31090444

RESUMO

Highly contagious Newcastle disease (ND) is associated with devastating outbreaks with highly variable clinical signs among gallinaceous birds. In this study we aimed to verify clinical ND suspicions in poultry holdings in Egypt suffering from respiratory distress and elevated mortality, comparing two groups of ND-vaccinated poultry holdings in three governorates. Besides testing for Newcastle disease virus (NDV), samples were screened for infectious bronchitis virus (IBV) and avian influenza virus (AIV) by RT-qPCR as well as by non-directed cell-culture approach on LMH-cells. Virulent NDV was confirmed only in group A (n = 16) comprising small-scale holdings. Phylogenetic analysis of the fusion protein gene of 11 NDV-positive samples obtained from this group assigned all viruses to genotype 2.VIIb and point to four different virus populations that were circulating at the same time in one governorate, indicating independent epidemiological events. In group B, comprising large commercial broiler farms (n = 10), virulent NDV was not present, although in six farms NDV vaccine-type virus (genotype 2.II) was detected. Besides, in both groups, co-infections by IBV (n = 10), AIV H9 (n = 3) and/or avian reovirus (ARV) (n = 5) and avian astrovirus (AastVs) (n = 1) could be identified. Taken together, the study confirmed clinical ND suspicion in small scale holdings, pointing to inefficient vaccination practices in this group A. However, it also highlighted that, even in an endemic situation like ND in Egypt, in cases of suspected ND vaccine failure, clinical ND suspicion has to be verified by pathotype-specific diagnostic tests. RESEARCH HIGHLIGHTS Velogenic NDV circulates in small-scale poultry holdings in Egypt. Viral transmission occurred among neighbouring farms and over long distances. Co-infections with multiple pathogens were identified. Pathotype specific diagnostic tests are essential to verify ND suspicions.


Assuntos
Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/epidemiologia , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Embrião de Galinha , Galinhas , Coinfecção/veterinária , Surtos de Doenças/veterinária , Egito/epidemiologia , Feminino , Genótipo , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/isolamento & purificação , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Doença de Newcastle/prevenção & controle , Doença de Newcastle/transmissão , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/ultraestrutura , Filogenia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Vacinas de Produtos Inativados/imunologia
19.
Open Vet J ; 9(1): 74-80, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31086770

RESUMO

A flock of 54 wk-old layer birds exhibiting signs of respiratory distress, greenish diarrhea, and drop in egg production was investigated. A marked drop in egg production (55%) was recorded with eggs appearing white and soft-shelled. Mortality was in the range of 1%-2% with post-mortem lesions revealing cloudy air sacs, frothy, and congested lungs. Viral RNA was extracted from pooled tissue samples (trachea, lungs, spleen, and liver) and tested for Avian influenza virus (AIV), Newcastle disease virus (NDV), and infectious bronchitis virus (IBV) by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, virus isolation was attempted in 9-11 day-old embryonating chicken eggs (ECE). In order to determine the prevalence of IBV serotype(s) in the flock, serum samples were screened by hemagglutination-inhibition (HI) test using IBV antigens and antisera (Arkansas, Connecticut, and Massachusetts). Neither AIV nor NDV but IBV was detected in the tissue samples by RT-PCR. In addition, virus isolate obtained after four serial passages in ECE produced dwarfed, stunted, and hemorrhagic embryos, and the isolate was confirmed by RT-PCR to be IBV. The serum samples were 100% seropositive for three serotypes with HI titres ranging from 5 to 12 Log2. In this study, IBV was confirmed as the causative agent of the observed respiratory distress and drop in egg production. Also, the evidence of co-circulation of multiple IBV serotypes was established, this to the best of our knowledge is the first of such report in Nigeria. We recommend extensive molecular and sero-epidemiology of circulating IBV genotypes and serotypes in Nigeria with the aim of developing better control strategies, including vaccination.


Assuntos
Bronquite/veterinária , Galinhas , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Bronquite/epidemiologia , Bronquite/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Feminino , Testes de Inibição da Hemaglutinação/veterinária , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/genética , Nigéria/epidemiologia , Doenças das Aves Domésticas/virologia , Prevalência , Sorogrupo
20.
Transbound Emerg Dis ; 66(4): 1631-1641, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30959552

RESUMO

Capripox virus infections are endemic diseases of livestock in Nigeria, but there are limited data on molecular characterization of circulating viruses. In this study, we investigated field outbreaks of Capripox virus infections in Nigeria via partial sequencing of viruses obtained from field samples. Eleven selected samples, collected from 2000-2016 from cattle (9), sheep (1) and goat (1) in three states in Nigeria and Capripox virus genome positive by PCR and real-time qPCR, were characterized using our newly developed partial sequencing protocol. This method for genetic characterization of Capripox virus strains allows a first, short molecular classification of strains responsible for the investigated field outbreaks in the country. Phylogenetically, the eight LSDV samples obtained from 2010 to 2016 are closely related to already published strains occurring in Greece and Serbia in the years 2015 and 2016, respectively, whereas the isolate from 2000 shows high similarity to the South African NI-2490 strain. These data indicate that there was a change of LSDV strains circulating in Nigeria between the years 2000 and 2010. The samples isolated from a goat and a sheep in different years seem to be related to already known GTPV strains, but clearly differ from all current published GTPV strains. Interestingly, both newly detected GTPV strains show up to 100% similarity compared to each other and led to clinical disease in sheep and goats. It is long known that some strains of GTPV and SPPV are able to infect both sheep and goats, but in most cases lead to more severe disease in only one of these species. Further genetic characterization of these isolates could provide more insight into pathogenesis and virulence factors of Capripox viruses, especially GTPV and SPPV.


Assuntos
Capripoxvirus/isolamento & purificação , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Doenças das Cabras/epidemiologia , Infecções por Poxviridae/veterinária , Doenças dos Ovinos/epidemiologia , Animais , Capripoxvirus/genética , Bovinos , Doenças dos Bovinos/virologia , Doenças das Cabras/virologia , Cabras , Nigéria/epidemiologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/virologia , Ovinos , Doenças dos Ovinos/virologia , Pele/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...