Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 142(11): 3382-3397, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31637422

RESUMO

CTP:phosphoethanolamine cytidylyltransferase (ET), encoded by PCYT2, is the rate-limiting enzyme for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. Phosphatidylethanolamine is one of the most abundant membrane lipids and is particularly enriched in the brain. We identified five individuals with biallelic PCYT2 variants clinically characterized by global developmental delay with regression, spastic para- or tetraparesis, epilepsy and progressive cerebral and cerebellar atrophy. Using patient fibroblasts we demonstrated that these variants are hypomorphic, result in altered but residual ET protein levels and concomitant reduced enzyme activity without affecting mRNA levels. The significantly better survival of hypomorphic CRISPR-Cas9 generated pcyt2 zebrafish knockout compared to a complete knockout, in conjunction with previously described data on the Pcyt2 mouse model, indicates that complete loss of ET function may be incompatible with life in vertebrates. Lipidomic analysis revealed profound lipid abnormalities in patient fibroblasts impacting both neutral etherlipid and etherphospholipid metabolism. Plasma lipidomics studies also identified changes in etherlipids that have the potential to be used as biomarkers for ET deficiency. In conclusion, our data establish PCYT2 as a disease gene for a new complex hereditary spastic paraplegia and confirm that etherlipid homeostasis is important for the development and function of the brain.

2.
Eur J Med Genet ; : 103798, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31655143

RESUMO

Musculocontractural Ehlers-Danlos syndrome (mcEDS) is an autosomal recessive condition characterized by distinct craniofacial features, multisystem congenital malformations and progressive fragility of connective tissues. It is caused by pathogenic variants in CHST14 and DSE genes. There are three reports of pathogenic variants in DSE in four mcEDS patients. In this study we provide clinical and molecular presentation of two new patients with DSE related mcEDS. Analysing clinical exome data, a homozygous pathogenic DSE variant, c.1150_1157del p.(Pro384Trpfs*9), was identified in a 32 year old man with bilateral congenital talipes equinovarus, characteristic facial features, myopia, hyperextensible skin at the elbows, significant palmar wrinkling, bilateral inguinal hernias and chronic leg, back and joint pain. Electron microscopical examination of skin biopsy showed changes consistent with mild compensatory elastic fibre hypertrophy and mildly loose collagen bundles. The variant is predicted to result in a frameshift and introduction of a premature termination codon in the final exon of the DSE gene, anticipated to lead to the loss of approximately 60% of the normal reading frame. The second patient has a phenotype consistent with previously reported cases of DSE associated musculocontractural EDS. A novel homozygous missense DSE variant of uncertain clinical significance was detected. This case study further delineates the DSE associated mcEDS phenotype and illustrates absence of major cutaneous, cardiovascular, renal and respiratory features, which supports previous suggestions that patients with DSE associated mcEDS present with a milder phenotype compared to those with CHST14 mutations.

3.
Genet Med ; 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31388190

RESUMO

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants in CHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.

4.
Clin Genet ; 96(1): 72-84, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31001818

RESUMO

Variants in the chromodomain helicase DNA-binding protein 8 (CHD8) have been associated with intellectual disability (ID), autism spectrum disorders (ASDs) and overgrowth and CHD8 is one of the causative genes for OGID (overgrowth and ID). We investigated 25 individuals with CHD8 protein truncating variants (PTVs), including 10 previously unreported patients and found a male to female ratio of 2.7:1 (19:7) and a pattern of common features: macrocephaly (62.5%), tall stature (47%), developmental delay and/or intellectual disability (81%), ASDs (84%), sleep difficulties (50%), gastrointestinal problems (40%), and distinct facial features. Most of the individuals in this cohort had moderate-to-severe ID, some had regression of speech (37%), seizures (27%) and hypotonia (27%) and two individuals were non-ambulant. Our study shows that haploinsufficiency of CHD8 is associated with a distinctive OGID syndrome with pronounced autistic traits and supports a sex-dependent penetrance of CHD8 PTVs in humans.

5.
Am J Hum Genet ; 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30503519

RESUMO

During genome replication, polymerase epsilon (Pol ε) acts as the major leading-strand DNA polymerase. Here we report the identification of biallelic mutations in POLE, encoding the Pol ε catalytic subunit POLE1, in 15 individuals from 12 families. Phenotypically, these individuals had clinical features closely resembling IMAGe syndrome (intrauterine growth restriction [IUGR], metaphyseal dysplasia, adrenal hypoplasia congenita, and genitourinary anomalies in males), a disorder previously associated with gain-of-function mutations in CDKN1C. POLE1-deficient individuals also exhibited distinctive facial features and variable immune dysfunction with evidence of lymphocyte deficiency. All subjects shared the same intronic variant (c.1686+32C>G) as part of a common haplotype, in combination with different loss-of-function variants in trans. The intronic variant alters splicing, and together the biallelic mutations lead to cellular deficiency of Pol ε and delayed S-phase progression. In summary, we establish POLE as a second gene in which mutations cause IMAGe syndrome. These findings add to a growing list of disorders due to mutations in DNA replication genes that manifest growth restriction alongside adrenal dysfunction and/or immunodeficiency, consolidating these as replisome phenotypes and highlighting a need for future studies to understand the tissue-specific development roles of the encoded proteins.

7.
Nat Commun ; 9(1): 1960, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773874

RESUMO

No efficient treatment exists for nephrotic syndrome (NS), a frequent cause of chronic kidney disease. Here we show mutations in six different genes (MAGI2, TNS2, DLC1, CDK20, ITSN1, ITSN2) as causing NS in 17 families with partially treatment-sensitive NS (pTSNS). These proteins interact and we delineate their roles in Rho-like small GTPase (RLSG) activity, and demonstrate deficiency for mutants of pTSNS patients. We find that CDK20 regulates DLC1. Knockdown of MAGI2, DLC1, or CDK20 in cultured podocytes reduces migration rate. Treatment with dexamethasone abolishes RhoA activation by knockdown of DLC1 or CDK20 indicating that steroid treatment in patients with pTSNS and mutations in these genes is mediated by this RLSG module. Furthermore, we discover ITSN1 and ITSN2 as podocytic guanine nucleotide exchange factors for Cdc42. We generate Itsn2-L knockout mice that recapitulate the mild NS phenotype. We, thus, define a functional network of RhoA regulation, thereby revealing potential therapeutic targets.

8.
Mol Cell ; 70(4): 707-721.e7, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29754823

RESUMO

DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4-/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4-/-p53+/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention.

9.
Epilepsy Res ; 140: 166-170, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29367179

RESUMO

Bainbridge-Ropers syndrome is a genetic syndrome caused by heterozygous loss-of-function pathogenic variants in ASXL3, which encodes a protein involved in transcriptional regulation. Affected individuals have multiple abnormalities including developmental impairment, hypotonia and characteristic facial features. Seizures are reported in approximately a third of cases; however, the epileptology has not been thoroughly studied. We identified three patients with pathogenic ASXL3 variants and seizures at Austin Health and in the DECIPHER database. These three patients had novel de novo ASXL3 pathogenic variants, two with truncation variants and one with a splice site variant. All three had childhood-onset generalized epilepsy with generalized tonic-clonic seizures, with one also having atypical absence seizures. We also reviewed available clinical data on five published patients with Bainbridge-Ropers syndrome and seizures. Of the five previously published patients, three also had generalized tonic-clonic seizures, one of whom also had possible absence seizures; a fourth patient had absence seizures and possible focal seizures. EEG typically showed features consistent with generalized epilepsy including generalized spike-wave, photoparoxysmal response, and occipital intermittent rhythmic epileptiform activity. Bainbridge-Ropers syndrome is associated with childhood-onset generalized epilepsy with generalized tonic-clonic seizures and/or atypical absence seizures.

10.
J Med Genet ; 55(1): 28-38, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29021403

RESUMO

INTRODUCTION: Recent evidence has emerged linking mutations in CDK13 to syndromic congenital heart disease. We present here genetic and phenotypic data pertaining to 16 individuals with CDK13 mutations. METHODS: Patients were investigated by exome sequencing, having presented with developmental delay and additional features suggestive of a syndromic cause. RESULTS: Our cohort comprised 16 individuals aged 4-16 years. All had developmental delay, including six with autism spectrum disorder. Common findings included feeding difficulties (15/16), structural cardiac anomalies (9/16), seizures (4/16) and abnormalities of the corpus callosum (4/11 patients who had undergone MRI). All had craniofacial dysmorphism, with common features including short, upslanting palpebral fissures, hypertelorism or telecanthus, medial epicanthic folds, low-set, posteriorly rotated ears and a small mouth with thin upper lip vermilion. Fifteen patients had predicted missense mutations, including five identical p.(Asn842Ser) substitutions and two p.(Gly717Arg) substitutions. One patient had a canonical splice acceptor site variant (c.2898-1G>A). All mutations were located within the protein kinase domain of CDK13. The affected amino acids are highly conserved, and in silico analyses including comparative protein modelling predict that they will interfere with protein function. The location of the missense mutations in a key catalytic domain suggests that they are likely to cause loss of catalytic activity but retention of cyclin K binding, resulting in a dominant negative mode of action. Although the splice-site mutation was predicted to produce a stable internally deleted protein, this was not supported by expression studies in lymphoblastoid cells. A loss of function contribution to the underlying pathological mechanism therefore cannot be excluded, and the clinical significance of this variant remains uncertain. CONCLUSIONS: These patients demonstrate that heterozygous, likely dominant negative mutations affecting the protein kinase domain of the CDK13 gene result in a recognisable, syndromic form of intellectual disability, with or without congenital heart disease.


Assuntos
Proteína Quinase CDC2/química , Proteína Quinase CDC2/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação/genética , Adolescente , Criança , Sequência Conservada , Feminino , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Domínios Proteicos , Síndrome , Termodinâmica
11.
Epilepsia ; 58(4): 565-575, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28166369

RESUMO

OBJECTIVE: The phenotype of seizure clustering with febrile illnesses in infancy/early childhood is well recognized. To date the only genetic epilepsy consistently associated with this phenotype is PCDH19, an X-linked disorder restricted to females, and males with mosaicism. The SMC1A gene, which encodes a structural component of the cohesin complex is also located on the X chromosome. Missense variants and small in-frame deletions of SMC1A cause approximately 5% of Cornelia de Lange Syndrome (CdLS). Recently, protein truncating mutations in SMC1A have been reported in five females, all of whom have been affected by a drug-resistant epilepsy, and severe developmental impairment. Our objective was to further delineate the phenotype of SMC1A truncation. METHOD: Female cases with de novo truncation mutations in SMC1A were identified from the Deciphering Developmental Disorders (DDD) study (n = 8), from postmortem testing of an affected twin (n = 1), and from clinical testing with an epilepsy gene panel (n = 1). Detailed information on the phenotype in each case was obtained. RESULTS: Ten cases with heterozygous de novo mutations in the SMC1A gene are presented. All 10 mutations identified are predicted to result in premature truncation of the SMC1A protein. All cases are female, and none had a clinical diagnosis of CdLS. They presented with onset of epileptic seizures between <4 weeks and 28 months of age. In the majority of cases, a marked preponderance for seizures to occur in clusters was noted. Seizure clusters were associated with developmental regression. Moderate or severe developmental impairment was apparent in all cases. SIGNIFICANCE: Truncation mutations in SMC1A cause a severe epilepsy phenotype with cluster seizures in females. These mutations are likely to be nonviable in males.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Epilepsia/genética , Mutação/genética , Convulsões/genética , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia/complicações , Feminino , Heterozigoto , Humanos , Masculino , Convulsões/complicações
12.
Nat Genet ; 48(11): 1349-1358, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27694961

RESUMO

Neurodevelopmental disorders with periventricular nodular heterotopia (PNH) are etiologically heterogeneous, and their genetic causes remain in many cases unknown. Here we show that missense mutations in NEDD4L mapping to the HECT domain of the encoded E3 ubiquitin ligase lead to PNH associated with toe syndactyly, cleft palate and neurodevelopmental delay. Cellular and expression data showed sensitivity of PNH-associated mutants to proteasome degradation. Moreover, an in utero electroporation approach showed that PNH-related mutants and excess wild-type NEDD4L affect neurogenesis, neuronal positioning and terminal translocation. Further investigations, including rapamycin-based experiments, found differential deregulation of pathways involved. Excess wild-type NEDD4L leads to disruption of Dab1 and mTORC1 pathways, while PNH-related mutations are associated with deregulation of mTORC1 and AKT activities. Altogether, these data provide insights into the critical role of NEDD4L in the regulation of mTOR pathways and their contributions in cortical development.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação de Sentido Incorreto , Heterotopia Nodular Periventricular/genética , Ubiquitina-Proteína Ligases/genética , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Domínios Proteicos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina/metabolismo
13.
Am J Med Genet A ; 170(11): 2835-2846, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27667800

RESUMO

KBG syndrome is characterized by short stature, distinctive facial features, and developmental/cognitive delay and is caused by mutations in ANKRD11, one of the ankyrin repeat-containing cofactors. We describe 32 KBG patients aged 2-47 years from 27 families ascertained via two pathways: targeted ANKRD11 sequencing (TS) in a group who had a clinical diagnosis of KBG and whole exome sequencing (ES) in a second group in whom the diagnosis was unknown. Speech delay and learning difficulties were almost universal and variable behavioral problems frequent. Macrodontia of permanent upper central incisors was seen in 85%. Other clinical features included short stature, conductive hearing loss, recurrent middle ear infection, palatal abnormalities, and feeding difficulties. We recognized a new feature of a wide anterior fontanelle with delayed closure in 22%. The subtle facial features of KBG syndrome were recognizable in half the patients. We identified 20 ANKRD11 mutations (18 novel: all truncating) confirmed by Sanger sequencing in 32 patients. Comparison of the two ascertainment groups demonstrated that facial/other typical features were more subtle in the ES group. There were no conclusive phenotype-genotype correlations. Our findings suggest that mutation of ANKRD11 is a common Mendelian cause of developmental delay. Affected patients may not show the characteristic KBG phenotype and the diagnosis is therefore easily missed. We propose updated diagnostic criteria/clinical recommendations for KBG syndrome and suggest that inclusion of ANKRD11 will increase the utility of gene panels designed to investigate developmental delay. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/diagnóstico , Doenças do Desenvolvimento Ósseo/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Anormalidades Dentárias/diagnóstico , Anormalidades Dentárias/genética , Deleção Cromossômica , Cromossomos Humanos Par 16 , Hibridização Genômica Comparativa , Facies , Feminino , Humanos , Masculino , Fenótipo , Proteínas Repressoras/genética
14.
Nat Genet ; 48(9): 1060-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27479907

RESUMO

Congenital heart defects (CHDs) have a neonatal incidence of 0.8-1% (refs. 1,2). Despite abundant examples of monogenic CHD in humans and mice, CHD has a low absolute sibling recurrence risk (∼2.7%), suggesting a considerable role for de novo mutations (DNMs) and/or incomplete penetrance. De novo protein-truncating variants (PTVs) have been shown to be enriched among the 10% of 'syndromic' patients with extra-cardiac manifestations. We exome sequenced 1,891 probands, including both syndromic CHD (S-CHD, n = 610) and nonsyndromic CHD (NS-CHD, n = 1,281). In S-CHD, we confirmed a significant enrichment of de novo PTVs but not inherited PTVs in known CHD-associated genes, consistent with recent findings. Conversely, in NS-CHD we observed significant enrichment of PTVs inherited from unaffected parents in CHD-associated genes. We identified three genome-wide significant S-CHD disorders caused by DNMs in CHD4, CDK13 and PRKD1. Our study finds evidence for distinct genetic architectures underlying the low sibling recurrence risk in S-CHD and NS-CHD.


Assuntos
Autoantígenos/genética , Proteína Quinase CDC2/genética , Cardiopatias Congênitas/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Mutação/genética , Proteína Quinase C/genética , Proteína Quinase CDC2/química , Exoma/genética , Feminino , Humanos , Masculino , Conformação Proteica , Deleção de Sequência , Síndrome
15.
Am J Hum Genet ; 97(6): 922-32, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26637982

RESUMO

We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome.


Assuntos
Deficiências do Desenvolvimento/genética , Histona Acetiltransferases/genética , Deficiência Intelectual/genética , Doenças Neurodegenerativas/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Adolescente , Animais , Criança , Pré-Escolar , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Elementos E-Box , Facies , Família , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Humanos , Lactente , Padrões de Herança , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Mutação , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Linhagem , Fenótipo , Transdução de Sinais , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Adulto Jovem , Peixe-Zebra
16.
Eur J Med Genet ; 58(9): 455-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26206081

RESUMO

INTRODUCTION: Oculo-auriculo-vertebral spectrum (OAVS OMIM 164210) is a craniofacial developmental disorder affecting the development of the structures derived from the 1st and the 2nd branchial arches during embryogenesis, with consequential maxillary, mandibular, and ear abnormalities. The phenotype in OAVS is variable and associated clinical features can involve the cardiac, renal, skeletal, and central nervous systems. Its aetiology is still poorly understood. METHODS: We have evaluated the clinical phenotypes of 51 previously unpublished patients with OAVS and their parents, and performed comparative genomic hybridization microarray studies to identify potential causative loci. RESULTS: Of all 51 patients, 16 (31%) had a family history of OAVS. Most had no relevant pre-natal history and only 5 (10%) cases had a history of environmental exposures that have previously been described as risk factors for OAVS. In 28 (55%) cases, the malformations were unilateral. When the involvement was bilateral, it was asymmetric. Ear abnormalities were present in 47 (92%) patients (unilateral in 24; and bilateral in 23). Hearing loss was common (85%), mostly conductive, but also sensorineural, or a combination of both. Hemifacial microsomia was present in 46 (90%) patients (17 also presented facial nerve palsy). Ocular anomalies were present in 15 (29%) patients. Vertebral anomalies were confirmed in 10 (20%) cases; 50% of those had additional heart, brain and/or other organ abnormalities. Brain abnormalities were present in 5 (10%) patients; developmental delay was more common among these patients. Limb abnormalities were found in 6 (12%) patients, and urogenital anomalies in 5 (10%). Array-CGH analysis identified 22q11 dosage anomalies in 10 out of 22 index cases screened. DISCUSSION: In this study we carried out in-depth phenotyping of OAVS in a large, multicentre cohort. Clinical characteristics are in line with those reported previously, however, we observed a higher incidence of hemifacial microsomia and lower incidence of ocular anomalies. Furthermore our data suggests that OAVS patients with vertebral anomalies or congenital heart defects have a higher frequency of additional brain, limb or other malformations. We had a higher rate of familial cases in our cohort in comparison with previous reports, possibly because these cases were referred preferentially to our genetic clinic where family members underwent examination. We propose that familial OAVS cases show phenotypic variability, hence, affected relatives might have been misclassified in previous reports. Moreover, in view of its phenotypic variability, OAVS is potentially a spectrum of conditions, which overlap with other conditions, such as mandibulofacial dysostosis. Array CGH in our cohort identified recurrent dosage anomalies on 22q11, which may contribute to, or increase the risk of OAVS. We hypothesize that although the 22q11 locus may harbour gene(s) or regulatory elements that play a role in the regulation of craniofacial symmetry and 1st and 2nd branchial arch development, OAVS is a heterogeneous condition and many cases have a multifactorial aetiology or are caused by mutations in as yet unidentified gene(s).


Assuntos
Deficiências do Desenvolvimento/genética , Síndrome de Goldenhar/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Encéfalo/anormalidades , Hibridização Genômica Comparativa , Orelha/anormalidades , Orelha/embriologia , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Feminino , Síndrome de Goldenhar/diagnóstico , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Hérnia Diafragmática/diagnóstico , Hérnia Diafragmática/genética , Humanos , Masculino , Coluna Vertebral/anormalidades
17.
J Neurodev Disord ; 6(1): 18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057328

RESUMO

BACKGROUND: Williams syndrome (WS) is a rare neurodevelopmental disorder arising from a hemizygotic deletion of approximately 27 genes on chromosome 7, at locus 7q11.23. WS is characterised by an uneven cognitive profile, with serious deficits in visuospatial tasks in comparison to relatively proficient performance in some other cognitive domains such as language and face processing. Individuals with partial genetic deletions within the WS critical region (WSCR) have provided insights into the contribution of specific genes to this complex phenotype. However, the combinatorial effects of different genes remain elusive. METHODS: WE REPORT ON VISUOSPATIAL COGNITION IN TWO INDIVIDUALS WITH CONTRASTING PARTIAL DELETIONS IN THE WSCR: one female (HR), aged 11 years 9 months, with haploinsufficiency for 24 of the WS genes (up to GTF2IRD1), and one male (JB), aged 14 years 2 months, with the three most telomeric genes within the WSCR deleted, or partially deleted. RESULTS: Our in-depth phenotyping of the visuospatial domain from table-top psychometric, and small- and large-scale experimental tasks reveal a profile in HR in line with typically developing controls, albeit with some atypical features. These data are contrasted with patient JB's atypical profile of strengths and weaknesses across the visuospatial domain, as well as with more substantial visuospatial deficits in individuals with the full WS deletion. CONCLUSIONS: Our findings point to the contribution of specific genes to spatial processing difficulties associated with WS, highlighting the multifaceted nature of spatial cognition and the divergent effects of genetic deletions within the WSCR on different components of visuospatial ability. The importance of general transcription factors at the telomeric end of the WSCR, and their combinatorial effects on the WS visuospatial phenotype are also discussed.

18.
Am J Med Genet A ; 164A(7): 1666-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24700646

RESUMO

Phelan-McDermid syndrome (22q13.3 deletion syndrome) is a contiguous gene disorder resulting from the deletion of the distal long arm of chromosome 22. SHANK3, a gene within the minimal critical region, is a candidate gene for the major neurological features of this syndrome. We report clinical and molecular data from a study of nine patients with overlapping interstitial deletions in 22q13 not involving SHANK3. All of these deletions overlap with the largest, but not with the smallest deletion associated with Phelan-McDermid syndrome. The deletion sizes and breakpoints varied considerably among our patients, with the largest deletion spanning 6.9 Mb and the smallest deletion spanning 2.7 Mb. Eight out of nine patients had a de novo deletion, while in one patient the origin of deletion was unknown. These patients shared clinical features common to Phelan-McDermid syndrome: developmental delay (11/12), speech delay (11/12), hypotonia (9/12), and feeding difficulties (7/12). Moreover, the majority of patients (8/12) exhibited macrocephaly. In the minimal deleted region, we identified two candidate genes, SULT4A1 and PARVB (associated with the PTEN pathway), which could be associated in our cohort with neurological features and macrocephaly/hypotonia, respectively. This study suggests that the haploinsufficiency of genes in the 22q13 region beside SHANK3 contributes to cognitive and speech development, and that these genes are involved in the phenotype associated with the larger Phelan-McDermid syndrome 22q13 deletions. Moreover, because the deletions in our patients do not involve the SHANK3 gene, we posit the existence of a new contiguous gene syndrome proximal to the smallest terminal deletions in the 22q13 region.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 22 , Proteínas do Tecido Nervoso/genética , Criança , Pré-Escolar , Cromossomos Humanos Par 22/genética , Hibridização Genômica Comparativa , Diagnóstico Diferencial , Facies , Feminino , Humanos , Lactente , Masculino , Fenótipo , Síndrome
19.
Eur J Hum Genet ; 22(6): 762-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24129430

RESUMO

Three different genes of the glycosylphosphatidylinositol anchor synthesis pathway, PIGV, PIGO, and PGAP2, have recently been implicated in hyperphosphatasia-mental retardation syndrome (HPMRS), also known as Mabry syndrome, a rare autosomal recessive form of intellectual disability. The aim of this study was to delineate the PIGV mutation spectrum as well as the associated phenotypic spectrum in a cohort of 16 individuals diagnosed with HPMRS on the basis of intellectual disability and elevated serum alkaline phosphate as minimal diagnostic criteria. All PIGV exons and intronic boundaries were sequenced in 16 individuals. Biallelic PIGV mutations were identified in 8 of 16 unrelated families with HPMRS. The most frequent mutation detected in about 80% of affected families including the cases reported here is the c.1022C>A PIGV mutation, which was found in both the homozygous as well as the heterozygous state. Four further mutations found in this study (c. 176T>G, c.53G>A, c.905T>C, and c.1405C>T) are novel. Our findings in the largest reported cohort to date significantly extend the range of reported manifestations associated with PIGV mutations and demonstrate that the severe end of the clinical spectrum presents as a multiple congenital malformation syndrome with a high frequency of Hirschsprung disease, vesicoureteral, and renal anomalies as well as anorectal malformations. PIGV mutations are the major cause of HPMRS, which displays a broad clinical variability regarding associated malformations and growth patterns. Severe developmental delays, particular facial anomalies, brachytelephalangy, and hyperphosphatasia are consistently found in PIGV-positive individuals.


Assuntos
Anormalidades Múltiplas/genética , Predisposição Genética para Doença/genética , Deficiência Intelectual/genética , Manosiltransferases/genética , Mutação , Distúrbios do Metabolismo do Fósforo/genética , Anormalidades Múltiplas/patologia , Adolescente , Sequência de Aminoácidos , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/patologia , Masculino , Dados de Sequência Molecular , Fenótipo , Distúrbios do Metabolismo do Fósforo/patologia , Homologia de Sequência de Aminoácidos , Síndrome , Adulto Jovem
20.
World J Pediatr ; 9(2): 179-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22105572

RESUMO

BACKGROUND: Mosaic trisomy 18 has a wide phenotypic spectrum ranging from near normal to early death. We report two cases that add to our knowledge of the disease. METHODS: Patient 1 was a girl with a tracheoesophageal fistula, horse-shoe kidneys and a ventricular septal defect. Karyotyping of her lymphocytes showed complete trisomy 18. Due to her milder phenotypes, skin fibroblasts were karyotyped. Patient 2 was a boy with biventricular hypertrophic cardiomyopathy, patent ductus arteriosus, ventricular and atrial septal defects and significant feeding problems. RESULTS: Karyotyping of the skin and lymphocytes in patients 1 and 2 respectively revealed trisomy 18 mosaicism. Both children had only mild learning problems and were generally healthy with satisfactory growth. Patient 1 illustrates the possibility of significant discrepancy between the levels of trisomic cells in skin fibroblasts and lymphocytes leading to misdiagnosis. This finding has significant implications in medical management and counselling. Hypertrophic cardiomyopathy in patient 2 is recognized as a novel finding for this condition. CONCLUSION: There is the possibility of good outcome for patients with mosaic trisomy 18, even in the presence of multiple congenital anomalies.


Assuntos
Mosaicismo , Trissomia/genética , Cromossomos Humanos Par 18/genética , Feminino , Humanos , Recém-Nascido , Cariotipagem , Masculino , Fenótipo , Síndrome da Trissomía do Cromossomo 18
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA