Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Inorg Chem ; 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271560

RESUMO

The synthesis and characterization of a series of homoleptic iron complexes [Fe(benzNHCOCO)2]2-/1-/0/1+ supported by the tridentate bis-aryloxide benzimidazolin-2-ylidene pincer ligand benzNHCOCO2- (II) is presented. While the reaction of 2 equiv of free ligand II with a ferrous iron precursor leads to the isolation of the coordination polymer [Fe(benzNHCOCOK)2]n (1), treatment of II with ferric iron salts allows for the synthesis and isolation of the mononuclear, octahedral bis-pincer compound K[Fe(benzNHCOCO)2] (2) and its crown-ether derivative [K(18c6)(THF)2][Fe(benzNHCOCO)2] (3). Electrochemical studies of 2 suggested stable products upon further one- and two-electron oxidation. Hence, treatment of 2 with 1 equiv of AgPF6 yields the charge-neutral species [Fe(benzNHCOCO)2] (4). Similarly, the cationic complex [Fe(benzNHCOCO)2]PF6 (5) is obtained by addition of 2 equiv of AgPF6. The characterization of complexes 1, 3, and 4 reveals iron-centered reduction and oxidation processes; thus, preserving the dianionic, closed-shell structure of both coordinated benzNHCOCO pincer chelates, II. This implies a stabilization of a highly Lewis acidic iron(IV) center by four phenolate anions rather than charge distribution across the ligand framework with a lower formal oxidation state at iron. Notably, the overall charge-neutral iron(IV) complex undergoes reductive elimination of the pincer ligand, providing a metal-free compound that can be described as a spirocyclic imidazolone ketal (6). In contrast, the ligand-metal bonds in 5, formally an iron(V) complex, are considerably covalent, rendering the assignment of its oxidation state challenging, if not impossible. All compounds are fully characterized, and the complexes' electronic structures were studied with a variety of spectroscopic and computational methods, including single-crystal X-ray diffraction (SC-XRD), X-band electron paramagnetic resonance (EPR), and zero-field 57Fe Mössbauer spectroscopy, variable-field and variable-temperature superconducting quantum interference device (SQUID) magnetization measurements, and multi-reference ab initio (NEVPT2/CASSCF) as well as density functional theory (DFT) studies. Taken altogether, the electronic structure of 5 is best described as an iron(IV) center antiferromagnetically coupled to a ligand-centered radical.

3.
Inorg Chem ; 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32279487

RESUMO

Stable coordination complexes of TiII (3d2) are relatively uncommon, but are of interest as synthons for low oxidation state titanium complexes for application as potential catalysts and reagents for organic synthesis. Specifically, high-spin TiII ions supported by redox-inactive ligands are still quite rare due to the reducing power of this soft ion. Among such TiII complexes is trans-[TiCl2(tmeda)2], where tmeda = N,N,N',N'-tetramethylethane-1,2-diamine. This complex was first reported by Gambarotta and co-workers almost 30 years ago, but it was not spectroscopically characterized and theoretical investigation by quantum chemical theory (QCT) was not feasible at that time. As part of our interest in low oxidation state early transition metal complexes, we have revisited this complex and report a modified synthesis and a low temperature (100 K) crystal structure that differs slightly from that originally reported at ambient temperature. We have used magnetometry, high-frequency and -field EPR (HFEPR), and variable-temperature variable-field magnetic circular dichroism (VTVH-MCD) spectroscopies to characterize trans-[TiCl2(tmeda)2]. These techniques yield the following S = 1 spin Hamiltonian parameters for the complex: D = -5.23(1) cm-1, E = -0.88(1) cm-1, (E/D = 0.17), g = [1.86(1), 1.94(2), 1.77(1)]. This information, in combination with electronic transitions from MCD, was used as input for both classical ligand-field theory (LFT) and detailed QCT studies, the latter including both density functional theory (DFT) and ab initio methods. These computational methods are seldom applied to paramagnetic early transition metal complexes, particularly those with S > 1/2. Our studies provide a complete picture of the electronic structure of this complex that can be put into context with the few other high-spin and mononuclear TiII species characterized to date.

4.
Int J Food Microbiol ; 325: 108627, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32334331

RESUMO

Fumonisins are mycotoxins that contaminate maize and maize-based food products, and feed. They have been associated with nerve system disorders in horses, pulmonary edema in swine as well as neural tube defects and esophageal cancer in humans. The fum1 gene codes for a polyketide synthase involved in the biosynthesis of fumonisins. It is present in the genomes of all fumonisin producing Fusarium spp. Reliable detection of fum1 can provide an estimate of the toxicological potential of cultures and food sources. Therefore, a fum1 specific LAMP assay was developed and tested with purified DNA of 48 different species from the Fusarium fujikuroi species complex (FFSC). The fum1 gene was detected in 22 species among which F. fujikuroi, F. globosum, F. nygamai, F. proliferatum, F. subglutinans and F. verticillioides were the most prominent fumonisin producers. None out of 92 tested non-Fusarium species showed cross reactions with the new assay. The lowest limit of detection (LOD) was 5 pg of genomic DNA per reaction for F. fujikuroi, F. nygamai and F. verticillioides. Higher LODs were found for other LAMP positive species. Apart from pure genomic DNA, the LAMP assay detected fumonisin-producers when 103 conidia/reaction were used as template after mechanical lysis. LAMP-results were well correlated with FB1 production. This is the first report on fumonisin production in strains of F. annanatum, F. coicis, F. mundagurra, F. newnesense, F. pininemorale, F. sororula, F. tjataeba, F. udum and F. werrikimbe. Usefulness of the LAMP assay was demonstrated by analyzing fumonisin contaminated maize grains. The new LAMP assay is rapid, sensitive and reliable for the diagnosis of typical fumonisin producers and can be a versatile tool in HACCP concepts that target the reduction of fumonisins in the food and feed chain.


Assuntos
Fumonisinas/metabolismo , Fusarium/genética , Técnicas de Diagnóstico Molecular/métodos , Micotoxinas/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Policetídeo Sintases/genética , Animais , DNA Fúngico/genética , Fusarium/metabolismo , Doenças dos Cavalos/microbiologia , Cavalos , Humanos , Suínos , Doenças dos Suínos/microbiologia , Zea mays/microbiologia
5.
J Am Chem Soc ; 142(18): 8147-8159, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239927

RESUMO

A rare example of a dinuclear iron core with a non-linearly bridged dinitrogen ligand is reported in this work. One-electron reduction of [(tBupyrr2py)Fe(OEt2)] (1) (tBupyrr2py2- = 2,6-bis((3,5-di-tert-butyl)pyrrol-2-yl)pyridine) with KC8 yields the complex [K]2[(tBupyrr2py)Fe]2(µ2-η1:η1-N2) (2), where the unusual cis-divacant octahedral coordination geometry about each iron and the η5-cation-π coordination of two potassium ions with four pyrrolyl units of the ligand cause distortion of the bridging end-on µ-N2 about the FeN2Fe core. Attempts to generate a Et2O-free version of 1 resulted instead in a dinuclear helical dimer, [(tBupyrr2py)Fe]2 (3), via bridging of the pyridine moieties of the ligand. Reduction of 3 by two electrons under N2 does not break up the dimer, nor does it result in formation of 2 but instead formation of the ate-complex [K(OEt2)]2[(tBupyrr2py)Fe]2 (4). Reduction of 1 by two electrons and in the presence of crown-ether forms the tetraanionic N2 complex [K2][K(18-crown-6)]2(tBupyrr2py)Fe]2(µ2-η1:η1-N2) (5), also having a distorted FeN2Fe moiety akin to 2. Complex 2 is thermally unstable and loses N2, disproportionating to Fe nanoparticles among other products. A combination of single-crystal X-ray diffraction studies, solution and solid-state magnetic studies, and 57Fe Mössbauer spectroscopy has been applied to characterize complexes 2-5, whereas DFT studies have been used to help explain the bonding and electronic structure in these unique diiron-N2 complexes 2 and 5.

6.
Inorg Chem ; 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32048837

RESUMO

The utility of the bulky aryloxide ligands 2,6-Ad2-4-Me-C6H2O- (Ad,Ad,MeArO-) and 2,6-Ad2-4-t-Bu-C6H2O- (Ad,Ad,t-BuArO-; Ad = 1-adamantyl) for stabilizing the Y(II) ion is reported and compared with the results with 2,6-t-Bu2-4-Me-C6H2O- (Ar'O-). In contrast to the reduction product obtained from reducing Y(OAr')3 with potassium graphite, which is only stable in solution for 60 s at room temperature, KC8 reduction of Y(OArAd,Ad,t-Bu)3 in THF in the presence of 2.2.2-cryptand (crypt) produces the room-temperature stable, crystallographically characterizable Y(II) aryloxide [K(crypt)][Y(OArAd,Ad,t-Bu)3]. The X-band EPR spectrum at 77 K shows an axial pattern with resonances centered at g⊥ = 1.97 and g∥ = 2.00 and hyperfine coupling constants of A⊥ = 156.5 G and A∥ = 147.8 G and at room temperature shows an isotropic pattern with giso = 1.98 and Aiso = 153.3 G, which is consistent with an S = 1/2 spin system with nuclear spin I = 1/2 for the 89Y isotope (100% natural abundance).

7.
J Org Chem ; 85(3): 1325-1327, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32003214
8.
Org Lett ; 22(3): 765-767, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32003221
9.
Chemistry ; 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31970834

RESUMO

This work reports the design and synthesis of a sterically protected triphenylamine scaffold which undergoes one-electron oxidation to form an amine-centered radical cation of remarkable stability. Several structural adjustments were made to tame the inherent reactivity of the radical cation. First, the parent propeller-shaped triphenylamine was planarized with sterically demanding bridging units and, second, protecting groups were deployed to block the reactive positions. The efficiently shielded triphenylamine core can be reversibly oxidized at moderate potentials (+0.38 V, vs. Fc/Fc+ in CH2 Cl2 ). Spectroelectrochemistry and chemical oxidation studies were employed to monitor the evolution of characteristic photophysical features. To obtain a better understanding of the impact of one-electron oxidation on structural and electronic properties, joint experimental and computational studies were conducted, including X-ray structural analysis, electron paramagnetic resonance (EPR), and density functional theory (DFT) calculations. The sterically shielded radical cation combines various desirable attributes: A characteristic and unobstructed absorption in the visible region, high stability which enables storage for weeks without spectroscopically traceable degradation, and a reliable oxidation/re-reduction process due to effective screening of the planarized triphenylamine core from its environment.

10.
Inorg Chem ; 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31977198

RESUMO

Transmetalation of the ß-diketiminate salt [M][MenacnacPh] (M+ = Na or K; MenacnacPh- = {PhNC(CH3)}2CH-) with UI3(THF)4 resulted in the formation of the homoleptic, octahedral complex [U(MenacnacPh)3] (1). Green colored 1 was fully characterized by a solid-state X-ray diffraction analysis and a combination of UV/vis/NIR, NMR, and EPR spectroscopic studies as well as solid-state SQUID magnetization studies and density functional theory calculations. Electrochemical studies of 1 revealed this species to possess two anodic waves for the U(III/IV) and U(IV/V) redox couples, with the former being chemically accessible. Using mild oxidants, such as [CoCp2][PF6] or [FeCp2][Al{OC(CF3)3}4], yields the discrete salts [1][A] (A = PF6-, Al{OC(CF3)3}4-), whereas the anion exchange of [1][PF6] with NaBPh4 yields [1][BPh4].

11.
J Am Chem Soc ; 142(4): 1864-1870, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31884789

RESUMO

Single-crystal cryogenic X-ray diffraction at 6 K, electron paramagnetic resonance spectroscopy, and correlated electronic structure calculations are combined to shed light on the nature of the metal-tris(aryloxide) and η2-H, C metal-alkane interactions in the [((t·BuArO)3tacn)UIII(Mecy-C6)]·(Mecy-C6) adduct. An analysis of the ligand field experienced by the uranium center using ab initio ligand field theory in combination with the angular overlap model yields rather unusual U-OArO and U-Ntacn bonding parameters for the metal-tris(aryloxide) interaction. These parameters are incompatible with the concept of σ and π metal-ligand overlap. For that reason, it is deduced that metal-ligand bonding in the [((t·BuArO)3tacn)UIII] moiety is predominantly ionic. The bonding interaction within the [((t·BuArO)3tacn)UIII] moiety is shown to be dispersive in nature and essentially supported by the upper-rim tBu groups of the (t·BuArO)3tacn3- ligand. Our findings indicate that the axial alkane molecule is held in place by the guest-host effect rather than direct metal-alkane ionic or covalent interactions.

12.
J Am Chem Soc ; 141(43): 17217-17235, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31566964

RESUMO

Iron-nitrosyls have fascinated chemists for a long time due to the noninnocent nature of the NO ligand that can exist in up to five different oxidation and spin states. Coordination to an open-shell iron center leads to complex electronic structures, which is the reason Enemark-Feltham introduced the {Fe-NO}n notation. In this work, we succeeded in characterizing a series of {Fe-NO}6-9 complexes, including a reactive {Fe-NO}10 intermediate. All complexes were synthesized with the tris-N-heterocyclic carbene ligand tris[2-(3-mesitylimidazol-2-ylidene)ethyl]amine (TIMENMes), which is known to support iron in high and low oxidation states. Reaction of NOBF4 with [(TIMENMes)Fe]2+ resulted in formation of the {Fe-NO}6 compound [(TIMENMes)Fe(NO)(CH3CN)](BF4)3 (1). Stepwise chemical reduction with Zn, Mg, and Na/Hg leads to the isostructural series of high-spin iron nitrosyl complexes {Fe-NO}7,8,9 (2-4). Reduction of {Fe-NO}9 with Cs electride finally yields the highly reduced {Fe-NO}10 intermediate, key to formation of [Cs(crypt-222)][(TIMENMes)Fe(NO)], (5) featuring a metalacyclic [Fe-(NO-NHC)3-] nitrosoalkane unit. All complexes were characterized by single-crystal XRD analyses, temperature and field-dependent SQUID magnetization methods, as well as 57Fe Mössbauer, IR, UV/vis, multinuclear NMR, and dual-mode EPR spectroscopy. Spectroscopy-based DFT analyses provide insight into the electronic structures of all compounds and allowed assignments of oxidation states to iron and NO ligands. An alternative synthesis to the {Fe-NO}8 complex was found via oxygenation of the nitride complex [(TIMENMes)Fe(N)](BF4). Surprisingly, the resulting {Fe-NO}8 species is electronically and structural similar to the [(TIMENMes)Fe(N)]+ precursor. Based on the structural and electronic similarities between this nitrosyl/nitride complex couple, we adopted the strategy, developed by Wieghardt et al., of extending the Enemark-Feltham nomenclature to nitrido complexes, rendering [(TIMENMes)Fe(N)]+ as a {Fe-N}8 species.

13.
Angew Chem Int Ed Engl ; 58(51): 18547-18551, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31529583

RESUMO

A novel method for the N-N bond cleavage of trimethylsilyl diazomethane is reported for the synthesis of terminal nitride complexes. The lithium salt of trimethylsilyl diazomethane was used to generate a rare terminal nitrilimine transition metal complex with partially occupied d-orbitals. This iron complex 2 was characterized by CHN combustion analysis, 1 H and 13 C NMR spectroscopic analysis, single-crystal X-ray crystallography, SQUID magnetometry, 57 Fe Mössbauer spectroscopy, and computational analysis. The combined results suggest a high-spin d 6 (S=2) electronic configuration and an allenic structure of the nitrilimine ligand. Reduction of 2 results in release of the nitrilimine ligand and formation of the iron(I) complex 3, which was characterized by CHN combustion analysis, 1 H NMR spectroscopic analysis, and single-crystal X-ray crystallography. Treatment of 2 with fluoride salts quantitatively yields the diamagnetic FeIV nitride complex 4, with concomitant formation of cyanide and trimethylsilyl fluoride through N-N bond cleavage.

14.
Dalton Trans ; 48(29): 10853-10864, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30950469

RESUMO

We here report the synthesis and characterization of a complete series of terminal hydrochalcogenido, U-EH, and chalcogenido uranium(iv) complexes, U≡E (with E = O, S, Se, Te), supported by the (Ad,MeArOH)3tacn (1,4,7-tris(3-(1-adamantyl)-5-methyl-2-hydroxybenzyl)-1,4,7-triazacyclononane) ligand system. Reaction of H2E with the trivalent precursor [((Ad,MeArO)3tacn)U] (1) yields the corresponding uranium(iv) hydrochalcogenido complexes [((Ad,MeArO)3tacn)U(EH)] (2). Subsequent deprotonation of the terminal hydrochalcogenido species with KN(SiMe3)2, in the presence of 2.2.2-cryptand, gives access to the uranium(iv) complexes with terminal chalcogenido ligands [K(2.2.2-crypt)][((Ad,MeArO)3tacn)U≡E] (3). In order to study the influence of the varying terminal chalogenido ligands on the overall molecular and electronic structure, all complexes were studied by single-crystal X-ray diffractometry, UV/vis/NIR, electronic absorption, and IR vibrational spectroscopy as well as SQUID magnetometry and computational analyses (DFT, MO, NBO).

15.
ChemSusChem ; 12(9): 1900-1905, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30893509

RESUMO

Illumination of anatase in an aqueous methanolic solution leads to the formation of Ti3+ sites that are catalytically active for the generation of dihydrogen (H2 ). With increasing illumination time, a light-induced self-amplification of the photocatalytic H2 production rate can be observed. The effect is characterized by electron paramagnetic resonance (EPR) spectroscopy, reflectivity, and photoelectrochemical techniques. Combined measurements of H2 generation rates and in situ EPR spectroscopic observation over the illumination time with AM 1.5G or UV light establish that the activation is accompanied by the formation of Ti3+ states, which is validated through their characteristic EPR resonance at g=1.93. This self-activation and amplification behavior can be observed for anatase nanoparticles and nanotubes.

16.
Chemistry ; 25(25): 6300-6305, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30883971

RESUMO

The reactivity of ruthenium and manganese complexes bearing intact white phosphorus in the coordination sphere was investigated towards the low-valent transition-metal species [Cp'''Co] (Cp'''=η5 -C5 H2 -1,2,4-tBu3 ) and [L0 M] (L0 =CH[CHN(2,6-Me2 C6 H3 )]2 ; M=Fe, Co). Remarkably, and irrespective of the metal species, the reaction proceeds by the selective cleavage of two P-P edges and the formation of a square-planar cyclo-P4 ligand. The reaction products [{CpRu(PPh3 )2 }{CoCp'''}(µ,η1:4 -P4 )][CF3 SO3 ] (5), [{CpBIG Mn(CO)2 }2 {CoCp'''}(µ,η1:1:4 -P4 )] (6) and [{CpBIG Mn(CO)2 }2 {ML0 }(µ,η1:1:4 -P4 )] (CpBIG =C5 (C6 H4 nBu)5 ; L0 =CH[CHN(2,6-Me2 C6 H3 )]2 ; M=Fe (7 a), Co (7 b)), respectively, were fully characterized by single-crystal X-ray diffraction and spectroscopic methods. The electronic structure of the cyclo-P4 ligand in the complexes 5-7 is best described as a π-delocalized P4 2- system, which is further stabilized by two and three metal moieties, respectively. DFT calculations envisaged a potential intermediate in the reaction to form 5, in which a quasi-butterfly-shaped P4 moiety bridges the two metals and behaves as an η3 -coordinated ligand towards the cobalt center.

17.
Angew Chem Int Ed Engl ; 58(6): 1679-1683, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30427562

RESUMO

Reaction of the trivalent uranium complex [((Ad,Me ArO)3 N)U(DME)] with one molar equiv [Na(OCAs)(dioxane)3 ], in the presence of 2.2.2-crypt, yields [Na(2.2.2-crypt)][{((Ad,Me ArO)3 N)UIV (THF)}(µ-O){((Ad,Me ArO)3 N)UIV (CAs)}] (1), the first example of a coordinated η1 -cyaarside ligand (CAs- ). Formation of the terminal CAs- is promoted by the highly reducing, oxophilic UIII precursor [((Ad,Me ArO)3 N)U(DME)] and proceeds through reductive C-O bond cleavage of the bound arsaethynolate anion, OCAs- . If two equiv of OCAs- react with the UIII precursor, the binuclear, µ-oxo-bridged U2 IV/IV complex [Na(2.2.2-crypt)]2 [{((Ad,Me ArO)3 N)UIV }2 (µ-O)(µ-AsCAs)] (2), comprising the hitherto unknown µ:η1 ,η1 -coordinated (AsCAs)2- ligand, is isolated. The mechanistic pathway to 2 involves the decarbonylation of a dimeric intermediate formed in the reaction of 1 with OCAs- . An alternative pathway to complex 2 is by conversion of 1 via addition of one further equiv of OCAs- .

18.
Chem Sci ; 9(45): 8590-8597, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30568784

RESUMO

In large-scale, hydrogen production from water-splitting represents the most promising solution for a clean, recyclable, and low-cost energy source. The realization of viable technological solutions requires suitable efficient electrochemical catalysts with low overpotentials and long-term stability for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) based on cheap and nontoxic materials. Herein, we present a unique molecular approach to monodispersed, ultra-small, and superiorly active iron phosphide (FeP) electrocatalysts for bifunctional OER, HER, and overall water-splitting. They result from transformation of a molecular iron phosphide precursor, containing a [Fe2P3] core with mixed-valence FeIIFeIII sites bridged by an asymmetric cyclo-P(2+1) 3- ligand. The as-synthesized FeP nanoparticles act as long-lasting electrocatalysts for OER and HER with low overpotential and high current densities that render them one of the best-performing electrocatalysts hitherto known. The fabricated alkaline electrolyzer delivered low cell voltage with durability over weeks, representing an attractive catalyst for large-scale water-splitting technologies.

19.
Angew Chem Int Ed Engl ; 57(44): 14597-14601, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30176109

RESUMO

The 16-valence electron species [Cp*2 Fe]2+ (Cp*=η-C5 Me5 ), formally featuring a tetravalent iron ion, quantitatively binds CO in HF solution to form the stable, diamagnetic carbonyl species [Cp*2 Fe(CO)]2+ . This dication forms salts in the presence of AsF6 - and SbF6 - that were crystallographically characterized. The molecular structure in crystals of [Cp*2 Fe(CO)](AsF6 )2 displays cyclopentadienyl rings that are clearly not parallel and an equatorially bound η1 -CO ligand. The formal oxidation state +IV of iron was investigated by 57 Fe Mössbauer spectroscopy and is supported by DFT computational analysis. A detailed spectroscopic characterization of the hitherto unprecedented high-valent iron carbonyl compounds is reported.

20.
Inorg Chem ; 57(20): 12876-12884, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30246533

RESUMO

[Y(N(SiMe3)2)3] reacts with (Ad,MeArOH)3mes to form the Y3+ complex [((Ad,MeArO)3mes)Y], 1-Y. This complex reacts with potassium metal in the presence of 2.2.2-cryptand to give a cocrystallized mixture of [K(2.2.2-cryptand)][((Ad,MeArO)3mes)Y], 2-Y, and [K(2.2.2-cryptand)][((Ad,MeArO)3mes)YH], 3-Y. The electron paramagnetic resonance spectrum of this crystalline mixture exhibits an isotropic signal at 77 K ( giso = 2.000, Wiso = 1.8 mT), suggesting that 2-Y is best described as a Y3+ complex of the tris(aryloxide)mesitylene radical ((Ad,MeArO)3mes)4-. Evidence of the hydride ligand in 3-Y was obtained by 89Y-1H heteronuclear multiple quantum coherence NMR spectroscopy, and a coupling constant of JYH = 93 Hz was observed. A single crystal of 3-Y was also obtained in pure form and structurally characterized for comparison with the crystal data on the mixed component 2-Ln/3-Ln crystals. The origin of the hydride in 3-Ln is unknown, but further studies of the reduction of 1-La, previously found to form 2-La, revealed a possible source. Ligand-based C-H bond activation and loss of hydrogen can occur under reducing conditions to form a tetraanionic ligand derived from ((Ad,MeArO)3mes)3-, as observed in [K(2.2.2-cryptand)][((Ad,MeArO)3(C6Me3(CH2)2CH)La], 4-La.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA