Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 258: 106317, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31918025

RESUMO

The antimicrobial activity of amphotericin B (AmB) depends on its interaction with ergosterol-containing cell membranes of fungus. Cholesterol is a sterol in mammalian cell membrane, and its structure is very similar to ergosterol, which caused to the toxic of amphotericin B to mammalian or human cell membranes. Even so, it is still the gold standard for the treatment of fungal infections. The mechanism of its toxicity to mammalian cell membrane has become a hot topic. The toxicity mechanism of amphotericin B on the cell membrane is also related to the phospholipids on the membrane. The effects of saturated and unsaturated fat chains on the interaction of amphotericin B with phospholipid monolayers containing cholesterol or ergosterol were studied at the molecular level using an air-water interface monolayer model. Both atomic force microscope and Brewster angle microscope were used to observe the surface morphology of the monolayer. The analysis of limiting molecular area suggested that the interaction between AmB and the two kinds of sterol is significantly different on the unsaturated lipid monolayer. According to the elastic modulus, the AmB molecules can increase the compressibility or viscoelasticity of the phospholipid/sterol monolayer. However, this impact of AmB on the DOPC/sterol monolayer containing ergosterol was stronger than that containing cholesterol at 25 ~ 50 mN/m. While this impact of AmB on the DPPC/sterol monolayer containing cholesterol was stronger than that containing ergosterol at 32 ~ 56 mN/m. The excess Gibbs free energy of the monolayer showed that, in the presence of saturated fat chain, amphotericin B could make the molecules of the DPPC/cholesterol monolayer and the DPPC/ergosterol monolayer arrange more closely and make intermolecular interaction stronger. There was no significant difference between DPPC/cholesterol monolayer and DPPC/ergosterol monolayer. However, in the presence of unsaturated chain, the effects of amphotericin B on the DOPC/cholesterol monolayer and the DOPC/ergosterol monolayer were significantly different. Amphotericin B made the molecular arrangement of DOPC/ergosterol monolayer more loosed, and the intermolecular force weakened at 5-35 mN/m. AFM images reflect that AmB can perforate the phospholipid-ergosterol monolayer, which was no significant correlation with saturation of the lipid monolayer. But the areas of dark areas shaped holes on the DPPC/ergosterol monolayer were larger than that on the DOPC/ergosterol monolayer. The adsorption of amphotericin B on lipid/sterol monolayer suggests that the orientation of amphotericin B may be different when it is inserted into the monolayer of phospholipid-sterol in the presence of saturated or unsaturated chains. The results are helpful to understand the complex mechanism of toxicity of amphotericin B to cell membrane.


Assuntos
Anfotericina B/química , Antibacterianos/química , Colesterol/química , Ergosterol/química , Fosfolipídeos/química , Ar , Humanos , Tamanho da Partícula , Pressão , Propriedades de Superfície , Água/química
2.
R Soc Open Sci ; 6(7): 190504, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31417748

RESUMO

Biodegradable random copolymers were successfully synthesized by melt polycondensation of poly(butylene succinate) (PBS) and salicylic acid (SA). The obtained copolymers were characterized by proton nuclear magnetic resonance spectroscopy. The effect of different SA contents on the properties of copolymers was investigated by universal testing machine, thermogravimetric analyser, differential scanning calorimetry and X-ray diffraction analysis. The results showed that the copolymers with 0.5% SA contents exhibited excellent elastic modulus (1413.0 MPa) and tensile strength (192.8 MPa), and similar thermal decomposition temperature (≈320°C) compared with pure PBS. By molecular docking simulations, it was proved that the degradability of copolymers was more effective than that of pure PBS with a binding energy of -5.77 kcal mol-1. PBS copolymers with a small amount of SA were not only biodegradable but could stimulate the growth of green vegetables. So biodegradable copolymers can be used over a wide range as they are environmentally friendly.

3.
Molecules ; 24(9)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064094

RESUMO

The authors wish to make the following corrections to this paper [...].

4.
Molecules ; 24(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979032

RESUMO

Boryl ligands play a very important role in catalysis because of their very high electron-donating property. In this paper, NNB-type boryl anions were designed as tridentate ligands to promote aryl C-H borylation. In combination with [IrCl(COD)]2, they generate a highly active catalyst for a broad range of (hetero)arene substrates, including highly electron-rich and/or sterically hindered ones. This work provides a new NNB-type tridentate boryl ligand to support homogeneous organometallic catalysis.


Assuntos
Compostos de Boro/química , Irídio/química , Compostos de Boro/síntese química , Catálise , Ligantes , Estrutura Molecular
5.
Molecules ; 24(7)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987277

RESUMO

In the past decades, borylation reactions have received extensive research interest and have developed into effective tools in the synthesis of versatile organoboron compounds. Boranes and symmetrical diboron compounds are commonly utilized as borylating reagents in these transformations, especially in the borylation reactions of unsaturated bonds. More recently, several types of unsymmetrical diboron reagents have been synthesized and applied in these borylation reactions, allowing for complementary chemo- and regioselectivity. This review aimed to highlight the recent development in this rising research field, focusing on new reactivity and selectivity that originates from the use of these unsymmetrical diboron reagents.


Assuntos
Compostos de Boro/química , Alquinos/química , Catálise , Fenômenos Mecânicos , Metais/química , Estrutura Molecular
6.
Molecules ; 24(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678144

RESUMO

A direct metal-free transformation from arylamines to aryl naphthalene-1,8-diamino boronamides, a type of masked boronic acid, has been developed based on Sandmeyer-type reactions. A nonsymmetrical diboron reagent, B(pin)-B(dan), was utilized as the borylating reagent, and the B(dan) moiety was transferred to the aim products selectively. This conversion tolerated a series of functional groups, including chloro, bromo, fluoro, ester, hydroxy, cyano and amide.


Assuntos
Aminas/química , Naftalenos/química
7.
Small ; 14(40): e1801987, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30062838

RESUMO

Lithium-sulfur (Li-S) batteries are considered as promising candidates for energy storage systems owing to their high theoretical capacity and high energy density. The application of Li-S batteries is hindered by several obstacles, however, including the shuttle effect, poor electrical conductivity, and the severe volume expansion of sulfur. The traditional method is to integrate sulfur with carbon materials. But the interaction between polysulfide intermediates and carbon is only weak physical adsorption, which easily leads to the escape of species from the framework (shuttle effect) of the material causing capacity loss. Recently, however, there has been a trend for the introduction of novel non-carbon materials as sulfur hosts based on the strong chemisorption. This review highlights recent research progress on novel non-carbon sulfur hosts based on strong chemisorption, in Li-S batteries. In comparison with carbon-based sulfur hosts, most non-carbon sulfur hosts have been demonstrated to be polar host materials that could efficiently adsorb polysulfide via strong chemisorption, mitigating their dissolution. The intrinsic mechanism associated with the role of non-carbon-based host materials in improving the performance of Li-S batteries is discussed.

8.
Small ; 14(24): e1702883, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29707887

RESUMO

With the serious impact of fossil fuels on the environment and the rapid development of the global economy, the development of clean and usable energy storage devices has become one of the most important themes of sustainable development in the world today. Supercapacitors are a new type of green energy storage device, with high power density, long cycle life, wide temperature range, and both economic and environmental advantages. In many industries, they have enormous application prospects. Electrode materials are an important factor affecting the performance of supercapacitors. MnO2 -based materials are widely investigated for supercapacitors because of their high theoretical capacitance, good chemical stability, low cost, and environmental friendliness. To achieve high specific capacitance and high rate capability, the current best solution is to use MnO2 and carbon composite materials. Herein, MnO2 -carbon composite as supercapacitor electrode materials is reviewed including the synthesis method and research status in recent years. Finally, the challenges and future development directions of an MnO2 -carbon based supercapacitor are summarized.

9.
Small ; 14(5)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29266708

RESUMO

Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na+ ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented.

10.
Molecules ; 21(12)2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27916897

RESUMO

Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching efficiency of perylene diimides by graphene oxide was not only dependent on the difference between the lowest unoccupied molecular orbital level of dyes and the conduction band of the graphene oxide, but also mainly on the difference in the molecular structures.


Assuntos
Corantes Fluorescentes/química , Grafite/química , Imidas/química , Perileno/análogos & derivados , Fluorescência , Óxidos/química , Perileno/química
11.
Dalton Trans ; 45(35): 13917-24, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27523776

RESUMO

A novel one-pot aerobic oxidation/Knoevenagel condensation reaction system was developed employing a Cu(ii)/amine bifunctional, basic metal-organic framework (MOF) as the catalyst. The sequential aerobic alcohol oxidation/Knoevenagel condensation reaction was efficiently promoted by the Cu3TATAT MOF catalyst in the absence of basic additives. The benzylidenemalononitrile product was produced in high yield and selectivity from an inexpensive benzyl alcohol starting material under an oxygen atmosphere. The role of the basic functionality was studied to demonstrate its role in the aerobic oxidation and Knoevenagel condensation reactions. The reaction progress was monitored in order to identify the reaction intermediate and follow the accumulation of the desired product. Lastly, results showed that the yield was not significantly compromised by the reuse of a batch of catalyst, even after more than five cycles.

12.
Langmuir ; 26(9): 6158-60, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20349968

RESUMO

This letter demonstrates that a novel, highly efficient enzyme electrode can be directly obtained using covalent attachment between carboxyl acid groups of graphene oxide sheets and amines of glucose oxidase. The resulting biosensor exhibits a broad linear range up to 28 mM x mm(-2) glucose with a sensitivity of 8.045 mA x cm(-2) x M(-1). The glucose oxidase-immobilized graphene oxide electrode also shows a reproducibility and a good storage stability, suggesting potentials for a wide range of practical applications. The biocompatibility of as-synthesized graphene oxide nanosheets with human cells, especially retinal pigment epithelium (RPE) cells, was investigated for the first time in the present work. Microporous graphene oxide exhibits good biocompatibility and has potential advantages with respect to cell attachment and proliferation, leading to opportunities for using graphene-based biosensors for the clinical diagnosis.


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais/métodos , Glucose/análise , Grafite/química , Linhagem Celular , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Humanos , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA