Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 160: 107793, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562845

RESUMO

Alcohol use and chronic pain are highly comorbid. Acute alcohol use typically produces an analgesic effect. However, chronic use can worsen the progression of chronic pain. In rodent models, acute models of pain have primarily been used to investigate the relationship between alcohol and pain analgesia. Here, we use two models of chronic pain, chronic inflammatory and peripheral neuropathic pain, to investigate acute alcohol's antinociceptive and analgesic properties. We hypothesize that acute ethanol is acting through opioid receptors to create an analgesic-like effect in both reflexive and affective dimensions of pain. Using male and female C57BL/6J mice, oral ethanol administration (0-1.25 g/kg) showed a dose-dependent reversal of mechanical hypersensitivity in both Complete Freund's Adjuvant (CFA) and chronic constriction injury (CCI) models of chronic inflammatory and neuropathic pain. No sex differences were observed. Using the conditioned place preference (CPP) task to assess the subjective responses to ethanol's anti-nociceptive properties, CCI-injured animals showed a preference for the ethanol-paired side, suggesting a reduction in an aversive and pain-like state produced by nerve injury. These effects are likely mediated through the kappa and possibly the mu opioid systems, since ethanol-induced anti-nociception following CCI was fully reversed by pretreatment with the kappa selective antagonist, nor-BNI, or high doses of naltrexone. These data show that ethanol possesses analgesic-like properties in chronic inflammatory and neuropathic pain models in mice and provide new insight into ethanol as it relates to chronic pain.

2.
Nicotine Tob Res ; 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31294817

RESUMO

INTRODUCTION: FTND (FagerstrÓ§m test for nicotine dependence) and TTFC (time to smoke first cigarette in the morning) are common measures of nicotine dependence (ND). However, genome-wide meta-analysis for these phenotypes has not been reported. METHODS: Genome-wide meta-analyses for FTND (N = 19,431) and TTFC (N = 18,567) phenotypes were conducted for adult smokers of European ancestry from 14 independent cohorts. RESULTS: We found that SORBS2 on 4q35 (p = 4.05 × 10-8), BG182718 on 11q22 (p = 1.02 × 10-8), and AA333164 on 14q21 (p = 4.11 × 10-9) were associated with TTFC phenotype. We attempted replication of leading candidates with independent samples (FTND, N = 7010 and TTFC, N = 10 061), however, due to limited power of the replication samples, the replication of these new loci did not reach significance. In gene-based analyses, COPB2 was found associated with FTND phenotype, and TFCP2L1, RELN, and INO80C were associated with TTFC phenotype. In pathway and network analyses, we found that the interconnected interactions among the endocytosis, regulation of actin cytoskeleton, axon guidance, MAPK signaling, and chemokine signaling pathways were involved in ND. CONCLUSIONS: Our analyses identified several promising candidates for both FTND and TTFC phenotypes, and further verification of these candidates was necessary. Candidates supported by both FTND and TTFC (CHRNA4, THSD7B, RBFOX1, and ZNF804A) were associated with addiction to alcohol, cocaine, and heroin, and were associated with autism and schizophrenia. We also identified novel pathways involved in cigarette smoking. The pathway interactions highlighted the importance of receptor recycling and internalization in ND. IMPLICATIONS: Understanding the genetic architecture of cigarette smoking and ND is critical to develop effective prevention and treatment. Our study identified novel candidates and biological pathways involved in FTND and TTFC phenotypes, and this will facilitate further investigation of these candidates and pathways.

3.
Pharmacol Biochem Behav ; 184: 172740, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31326461

RESUMO

BACKGROUND: Alcohol use disorder is a serious illness marked by uncontrollable drinking and a negative withdrawal state when not using. Alcohol is one of the most commonly used drugs among adolescent populations. Given that adolescence is a unique developmental stage during which alcohol has long-term effects on future drug-taking behavior; it is essential to understand how early exposure to ethanol during adolescence may affect the abuse liability of the drug later in life. Our studies focused on characterizing how exposure to alcohol in adolescence alters later adult alcohol dependence behaviors, by using well-established mouse models of ethanol drinking. We hypothesized that early exposure to ethanol leads to increased ethanol intake in adults and other behavioral phenotypes that may lead to dependence. METHODS: We investigated the impact of ethanol drinking in early adolescent C57BL/6J mice using a modified Drinking in the Dark (DID) model. RESULTS: Our results showed that exposure to ethanol during adolescence enhanced ethanol intake in adulthood in the DID, and the 2-bottle choice drinking paradigms. In contrast, adult exposure of alcohol did not enhance later alcohol intake. We also conducted tests for ethanol behavioral sensitivity such as loss of righting reflex and anxiety-related behaviors to further elucidate the relationship between adolescent ethanol exposure and enhanced ethanol intake in adult mice. CONCLUSIONS: Overall, our results suggest that adolescence is a critical period of sensitivity and binge drinking that can lead to lasting changes in ethanol intake in adulthood. Further research will be required in order to more fully examine the neurochemical mechanisms underlying the lasting changes in adulthood.

5.
6.
PLoS One ; 14(4): e0202063, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017905

RESUMO

Genome-wide association studies on alcohol dependence, by themselves, have yet to account for the estimated heritability of the disorder and provide incomplete mechanistic understanding of this complex trait. Integrating brain ethanol-responsive gene expression networks from model organisms with human genetic data on alcohol dependence could aid in identifying dependence-associated genes and functional networks in which they are involved. This study used a modification of the Edge-Weighted Dense Module Searching for genome-wide association studies (EW-dmGWAS) approach to co-analyze whole-genome gene expression data from ethanol-exposed mouse brain tissue, human protein-protein interaction databases and alcohol dependence-related genome-wide association studies. Results revealed novel ethanol-responsive and alcohol dependence-associated gene networks in prefrontal cortex, nucleus accumbens, and ventral tegmental area. Three of these networks were overrepresented with genome-wide association signals from an independent dataset. These networks were significantly overrepresented for gene ontology categories involving several mechanisms, including actin filament-based activity, transcript regulation, Wnt and Syndecan-mediated signaling, and ubiquitination. Together, these studies provide novel insight for brain mechanisms contributing to alcohol dependence.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30401942

RESUMO

Following the publication of this article Figs. 3b, c were published incorrectly. Also in sub-panel c of Fig. 4, 'Chronic cloza ine' should read 'Chronic clozapine'.

8.
Front Genet ; 9: 402, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319688

RESUMO

Alcoholism is a complex behavioral disorder characterized by loss of control in limiting intake, and progressive compulsion to seek and consume ethanol. Prior studies have suggested that the characteristic behaviors associated with escalation of drug use are caused, at least in part, by ethanol-evoked changes in gene expression affecting synaptic plasticity. Implicit in this hypothesis is a dependence on new protein synthesis and remodeling at the synapse. It is well established that mRNA can be transported to distal dendritic processes, where it can undergo localized translation. It is unknown whether such modulation of the synaptic transcriptome might contribute to ethanol-induced synaptic plasticity. Using ethanol-induced behavioral sensitization as a model of neuroplasticity, we investigated whether repeated exposure to ethanol altered the synaptic transcriptome, contributing to mechanisms underlying subsequent increases in ethanol-evoked locomotor activity. RNAseq profiling of DBA/2J mice subjected to acute ethanol or ethanol-induced behavioral sensitization was performed on frontal pole synaptoneurosomes to enrich for synaptic mRNA. Genomic profiling showed distinct functional classes of mRNA enriched in the synaptic vs. cytosolic fractions, consistent with their role in synaptic function. Ethanol sensitization regulated more than twice the number of synaptic localized genes compared to acute ethanol exposure. Synaptic biological processes selectively perturbed by ethanol sensitization included protein folding and modification as well as and mitochondrial respiratory function, suggesting repeated ethanol exposure alters synaptic energy production and the processing of newly translated proteins. Additionally, marked differential exon usage followed ethanol sensitization in both synaptic and non-synaptic cellular fractions, with little to no perturbation following acute ethanol exposure. Altered synaptic exon usage following ethanol sensitization strongly affected genes related to RNA processing and stability, translational regulation, and synaptic function. These genes were also enriched for targets of the FMRP RNA-binding protein and contained consensus sequence motifs related to other known RNA binding proteins, suggesting that ethanol sensitization altered selective mRNA trafficking mechanisms. This study provides a foundation for investigating the role of ethanol in modifying the synaptic transcriptome and inducing changes in synaptic plasticity.

9.
Alcohol Clin Exp Res ; 42(12): 2360-2368, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30320886

RESUMO

BACKGROUND: Recent reviews have highlighted the potential use of blood-based methylation biomarkers as diagnostic and prognostic tools of current and future alcohol use and addiction. Due to the substantial overlap that often exists between methylation patterns across different tissues, including blood and brain, blood-based methylation may track methylation changes in brain; however, little work has explored the overlap in alcohol-related methylation in these tissues. METHODS: To study the effects of alcohol on the brain methylome and identify possible biomarkers of these changes in blood, we performed a methylome-wide association study in brain and blood from 40 male DBA/2J mice that received either an acute ethanol (EtOH) or saline intraperitoneal injection. To investigate all 22 million CpGs in the mouse genome, we enriched for the methylated genomic fraction using methyl-CpG binding domain (MBD) protein capture followed by next-generation sequencing (MBD-seq). We performed association tests in blood and brain separately followed by enrichment testing to determine whether there was overlapping alcohol-related methylation in the 2 tissues. RESULTS: The top result for brain was a CpG located in an intron of Ttc39b (p = 5.65 × 10-08 ), and for blood, the top result was located in Espnl (p = 5.11 × 10-08 ). Analyses implicated pathways involved in inflammation and neuronal differentiation, such as CXCR4, IL-7, and Wnt signaling. Enrichment tests indicated significant overlap among the top results in brain and blood. Pathway analyses of the overlapping genes converge on MAPKinase signaling (p = 5.6 × 10-05 ) which plays a central role in acute and chronic responses to alcohol and glutamate receptor pathways, which can regulate neuroplastic changes underlying addictive behavior. CONCLUSIONS: Overall, we have shown some methylation changes in brain and blood after acute EtOH administration and that the changes in blood partly mirror the changes in brain suggesting the potential for DNA methylation in blood to be biomarkers of alcohol use.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30209534

RESUMO

BACKGROUND: Serotonin 5-HT2A and metabotropic glutamate 2 (mGlu2) are neurotransmitter G protein-coupled receptors (GPCRs) involved in the signaling mechanisms underlying psychosis and schizophrenia treatment. Previous findings in mGlu2 knockout (KO) mice suggested that mGlu2 is necessary for head-twitch behavior, a rodent phenotype characteristic of hallucinogenic 5-HT2A receptor agonists. However, the role of mGlu2 in the behavioral effects induced by antipsychotic drugs remains poorly understood. Here, we tested antipsychotic-like behavioral phenotypes induced by the atypical antipsychotic clozapine in mGlu2-KO mice and wild-type control littermates. METHODS: Locomotor activity was tested in mGlu2-KO mice and control littermates injected (i.p.) with clozapine (1.5 mg/kg) or vehicle followed by MK801 (0.5 mg/kg), PCP (7.5 mg/kg), amphetamine (6 mg/kg), scopolamine (2 mg/kg), or vehicle. Using a virally (HSV) mediated transgene expression approach, the role of frontal cortex mGlu2 in the modulation of MK801-induced locomotor activity by clozapine treatment was also evaluated. RESULTS: The effect of clozapine on hyperlocomotor activity induced by the dissociative drugs MK801 and phencyclidine (PCP) was decreased in mGlu2-KO mice as compared to controls. Clozapine treatment, however, reduced hyperlocomotor activity induced by the stimulant drug amphetamine and the deliriant drug scopolamine in both wild-type and mGlu2-KO mice. Virally mediated over-expression of mGlu2 in the frontal cortex of mGlu2-KO mice rescued the ability of clozapine to reduce MK801-induced hyperlocomotion. CONCLUSION: These findings further support the existence of a functionally relevant crosstalk between 5-HT2A and mGlu2 receptors in different preclinical models of antipsychotic activity.

11.
Alcohol ; 72: 19-31, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30213503

RESUMO

This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 9-12, 2017. Psychiatric diseases, including alcohol-use disorders (AUDs), are influenced through complex interactions of genes, neurobiological pathways, and environmental influences. A better understanding of the common neurobiological mechanisms underlying an AUD necessitates an integrative approach, involving a systematic assessment of diverse species and phenotype measures. As part of the World Congress on Stress and Alcoholism, this symposium provided a detailed account of current strategies to identify mechanisms underlying the development and progression of AUDs. Dr. Sean Farris discussed the integration and organization of transcriptome and postmortem human brain data to identify brain regional- and cell type-specific differences related to excessive alcohol consumption that are conserved across species. Dr. Brien Riley presented the results of a genome-wide association study of DSM-IV alcohol dependence; although replication of genetic associations with alcohol phenotypes in humans remains challenging, model organism studies show that COL6A3, KLF12, and RYR3 affect behavioral responses to ethanol, and provide substantial evidence for their role in human alcohol-related traits. Dr. Rob Williams expanded upon the systematic characterization of extensive genetic-genomic resources for quantifying and clarifying phenotypes across species that are relevant to precision medicine in human disease. The symposium concluded with Dr. Robert Hitzemann's description of transcriptome studies in a mouse model selectively bred for high alcohol ("binge-like") consumption and a non-human primate model of long-term alcohol consumption. Together, the different components of this session provided an overview of systems-based approaches that are pioneering the experimental prioritization and validation of novel genes and gene networks linked with a range of behavioral phenotypes associated with stress and AUDs.

12.
Neuropsychopharmacology ; 43(13): 2521-2531, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30188517

RESUMO

Understanding how ethanol actions on brain signal transduction and gene expression lead to excessive consumption and addiction could identify new treatments for alcohol dependence. We previously identified glycogen synthase kinase 3-beta (Gsk3b) as a member of a highly ethanol-responsive gene network in mouse medial prefrontal cortex (mPFC). Gsk3b has been implicated in dendritic function, synaptic plasticity and behavioral responses to other drugs of abuse. Here, we investigate Gsk3b in rodent models of ethanol consumption and as a risk factor for human alcohol dependence. Stereotactic viral vector gene delivery overexpression of Gsk3b in mouse mPFC increased 2-bottle choice ethanol consumption, which was blocked by lithium, a known GSK3B inhibitor. Further, Gsk3b overexpression increased anxiety-like behavior following abstinence from ethanol. Protein or mRNA expression studies following Gsk3b over-expression identified synaptojanin 2, brain-derived neurotrophic factor and the neuropeptide Y Y5 receptor as potential downstream factors altering ethanol behaviors. Rat operant studies showed that selective pharmacologic inhibition of GSK3B with TDZD-8 dose-dependently decreased motivation to self-administer ethanol and sucrose and selectively blocked ethanol relapse-like behavior. In set-based and gene-wise genetic association analysis, a GSK3b-centric gene expression network had significant genetic associations, at a gene and network level, with risk for alcohol dependence in humans. These mutually reinforcing cross-species findings implicate GSK3B in neurobiological mechanisms controlling ethanol consumption, and as both a potential risk factor and therapeutic target for alcohol dependence.

13.
Artigo em Inglês | MEDLINE | ID: mdl-30038413

RESUMO

Preclinical findings in rodent models pointed toward activation of metabotropic glutamate 2/3 (mGlu2/3) receptors as a new pharmacological approach to treat psychosis. However, more recent studies failed to show clinical efficacy of mGlu2/3 receptor agonism in schizophrenia patients. We previously proposed that long-term antipsychotic medication restricted the therapeutic effects of these glutamatergic agents. However, little is known about the molecular mechanism underlying the potential repercussion of previous antipsychotic exposure on the therapeutic performance of mGlu2/3 receptor agonists. Here we show that this maladaptive effect of antipsychotic treatment is mediated mostly via histone deacetylase 2 (HDAC2). Chronic treatment with the antipsychotic clozapine led to a decrease in mouse frontal cortex mGlu2 mRNA, an effect that required expression of both HDAC2 and the serotonin 5-HT2A receptor. This transcriptional alteration occurred in association with HDAC2-dependent repressive histone modifications at the mGlu2 promoter. We found that chronic clozapine treatment decreased via HDAC2 the capabilities of the mGlu2/3 receptor agonist LY379268 to activate G-proteins in the frontal cortex of mice. Chronic clozapine treatment blunted the antipsychotic-related behavioral effects of LY379268, an effect that was not observed in HDAC2 knockout mice. More importantly, co-administration of the class I and II HDAC inhibitor SAHA (vorinostat) preserved the antipsychotic profile of LY379268 and frontal cortex mGlu2/3 receptor density in wild-type mice. These findings raise concerns on the design of previous clinical studies with mGlu2/3 agonists, providing the rationale for the development of HDAC2 inhibitors as a new epigenetic-based approach to improve the currently limited response to treatment with glutamatergic antipsychotics.

14.
Neuropharmacology ; 138: 341-348, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29944862

RESUMO

Evidence suggests that there is an association between polymorphisms in the α5 nicotinic acetylcholine receptor (nAChR) subunit and risk of developing alcohol dependence in humans. The α5 nAChR subunit has also recently been shown to modulate some of the acute response to ethanol in mice. The aim of the current study was to further characterize the role of α5-containing (α5*) nAChRs in acute ethanol responsive behaviors, ethanol consumption and ethanol preference in mice. We conducted a battery of tests in male α5 knockout (KO) mice for a range of ethanol-induced behaviors including hypothermia, hypnosis, and anxiolysis. We also investigated the effects of α5* nAChR on ethanol reward using the Conditioned Place Preference (CPP) assay. Further, we tested the effects of gene deletion on drinking behaviors using the voluntary ethanol consumption in a two-bottle choice assay and Drinking in the Dark (DID, with or without stress) paradigm. We found that deletion of the α5 nAChR subunit enhanced ethanol-induced hypothermia, hypnosis, and an anxiolytic-like response in comparison to wild-type controls. The α5 KO mice showed reduced CPP for ethanol, suggesting that the rewarding properties of ethanol are decreased in mutant mice. Interestingly, Chrna5 gene deletion had no effect on basal ethanol drinking behavior, or ethanol metabolism, but did decrease ethanol intake in the DID paradigm following restraint stress. Taken together, we provide new evidence that α5 nAChRs are involved in some but not all of the behavioral effects of ethanol. Our results highlight the importance of nAChRs as a possible target for the treatment of alcohol dependence.

15.
Addict Biol ; 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316088

RESUMO

Alcohol use disorder (AUD) is a heritable complex behavior. Due to the highly polygenic nature of AUD, identifying genetic variants that comprise this heritable variation has proved to be challenging. With the exception of functional variants in alcohol metabolizing genes (e.g. ADH1B and ALDH2), few other candidate loci have been confidently linked to AUD. Genome-wide association studies (GWAS) of AUD and other alcohol-related phenotypes have either produced few hits with genome-wide significance or have failed to replicate on further study. These issues reinforce the complex nature of the genetic underpinnings for AUD and suggest that both GWAS studies with larger samples and additional analysis approaches that better harness the nominally significant loci in existing GWAS are needed. Here, we review approaches of interest in the post-GWAS era, including in silico functional analyses; functional partitioning of single nucleotide polymorphism heritability; aggregation of signal into genes and gene networks; and validation of identified loci, genes and gene networks in postmortem brain tissue and across species. These integrative approaches hold promise to illuminate our understanding of the biological basis of AUD; however, we recognize that the main challenge continues to be the extremely polygenic nature of AUD, which necessitates large samples to identify multiple loci associated with AUD liability.

16.
Front Mol Neurosci ; 10: 307, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018328

RESUMO

Adolescents primarily consume alcohol in binges, which can be particularly harmful to the developing frontal cortex and increase risk for an adult alcohol use disorder. We conducted a study investigating immediate and long lasting changes to the prefrontal cortex (PFC) transcriptome to determine the molecular mechanisms underlying adult ethanol behavioral sensitivity following binge ethanol in adolescence. DBA/2J mice were orally dosed with 4 g/kg ethanol intermittently from day 29 to 42. Adolescent mice were tested for anxiety-like behavior and ethanol sensitivity using the loss of righting reflex task. As adults, mice were tested for cognitive changes using the novel object recognition task, ethanol-induced anxiolysis and ethanol sensitivity. Adolescent binge ethanol altered ethanol sensitivity in young mice and led to lasting memory deficits in the object recognition test and greater ethanol sensitivity in adulthood. Using genomic profiling of transcripts in the PFC, we found that binge ethanol reduced myelin-related gene expression and altered chromatin modifying genes involved in histone demethylation at H3K9 and H3K36. We hypothesize that ethanol's actions on histone methylation may be a switch for future transcriptional changes that underlie the behavioral changes lasting into adulthood.

17.
Neuropharmacology ; 118: 38-45, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28279662

RESUMO

Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence.


Assuntos
Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , PPAR alfa/metabolismo , Tabagismo/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Anestésicos Locais/administração & dosagem , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Cocaína/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oxazóis/farmacologia , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , Pirimidinas/farmacologia , Autoadministração , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Tirosina/análogos & derivados , Tirosina/farmacologia
18.
Alcohol ; 58: 73-82, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27793543

RESUMO

The BXD family of mice were generated by crossing and inbreeding ethanol-preferring C57BL/6J and ethanol-avoiding DBA/2J strains that differ greatly in genome sequence and other behaviors. This study evaluated variations in the level of voluntary ethanol intake in a cohort of 42 BXD strains and both progenitor strains using a model of alcohol dependence and relapse drinking. A total of 119 BXDs (85 males, 34 females) (n âˆ¼ 4 per genotype; 1/genotype/sex/group) were evaluated along with males from both progenitor strains (n = 14-15/genotype). Mice were evaluated for intake using limited access (2 h/day) 2-bottle (15% v/v ethanol vs. water) model for 6 weeks (baseline intake). Each animal received 4 weekly cycles of chronic intermittent ethanol (CIE) vapor exposure (CIE group) or air control exposure (CTL group) (16 h/day × 4 days) interleaved by 5-day drinking test cycles. Blood ethanol concentrations (BEC) ranged from 150 to 300 mg/dl across genotypes. Baseline intake varied greatly among cases-from ∼0.8 to ∼2.9 g/kg. As expected, CIE exposure induced a significant increase in ethanol drinking in C57BL/6J relative to baseline as well as air controls that remained relatively stable over the four test cycles. In contrast, DBA/2J cases did not show a significant increase in consumption. Heritability of variation in baseline consumption, calculated from C57BL/6J and DBA/2J strains is about 54% but this increases following treatment to 60-80%. As expected from the marked difference between progenitors, ethanol intake and level of escalation varied greatly among BXDs after exposure (∼-1.3 to 2.6 g/kg). Interestingly, the magnitude and direction of changes in ethanol intake did not relate to BEC values of the preceding CIE exposure cycle. Overall, these data indicate significant variation in consumption and even escalation, much of it under genetic control, following repeated CIE treatment.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Etanol/administração & dosagem , Exposição por Inalação , Consumo de Bebidas Alcoólicas/psicologia , Animais , Estudos de Coortes , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Especificidade da Espécie
19.
Alcohol ; 58: 93-106, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27838001

RESUMO

The transition from acute to chronic ethanol exposure leads to lasting behavioral and physiological changes such as increased consumption, dependence, and withdrawal. Changes in brain gene expression are hypothesized to underlie these adaptive responses to ethanol. Previous studies on acute ethanol identified genetic variation in brain gene expression networks and behavioral responses to ethanol across the BXD panel of recombinant inbred mice. In this work, we have performed the first joint genetic and genomic analysis of transcriptome shifts in response to chronic intermittent ethanol (CIE) by vapor chamber exposure in a BXD cohort. CIE treatment is known to produce significant and sustained changes in ethanol consumption with repeated cycles of ethanol vapor. Using Affymetrix microarray analysis of prefrontal cortex (PFC) and nucleus accumbens (NAC) RNA, we compared CIE expression responses to those seen following acute ethanol treatment, and to voluntary ethanol consumption. Gene expression changes in PFC and NAC after CIE overlapped significantly across brain regions and with previously published expression following acute ethanol. Genes highly modulated by CIE were enriched for specific biological processes including synaptic transmission, neuron ensheathment, intracellular signaling, and neuronal projection development. Expression quantitative trait locus (eQTL) analyses identified genomic loci associated with ethanol-induced transcriptional changes with largely distinct loci identified between brain regions. Correlating CIE-regulated genes to ethanol consumption data identified specific genes highly associated with variation in the increase in drinking seen with repeated cycles of CIE. In particular, multiple myelin-related genes were identified. Furthermore, genetic variance in or near dynamin3 (Dnm3) on Chr1 at ∼164 Mb may have a major regulatory role in CIE-responsive gene expression. Dnm3 expression correlates significantly with ethanol consumption, is contained in a highly ranked functional group of CIE-regulated genes in the NAC, and has a cis-eQTL within a genomic region linked with multiple CIE-responsive genes.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Alostase/efeitos dos fármacos , Alostase/fisiologia , Etanol/administração & dosagem , Exposição por Inalação , Análise Serial de Proteínas , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Estudos de Coortes , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Análise Serial de Proteínas/métodos
20.
Methods Mol Biol ; 1488: 531-549, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27933543

RESUMO

Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce nonbiased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA, and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x environmental interactions affecting brain functioning in health and disease.


Assuntos
Comportamento de Ingestão de Líquido , Etanol , Estudos de Associação Genética/métodos , Genômica/métodos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Alcoolismo/tratamento farmacológico , Alcoolismo/genética , Alcoolismo/metabolismo , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Camundongos , Fenótipo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA