Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Curr Biol ; 29(19): R1008-R1020, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31593660


If current trends continue, the tropical forests of the Anthropocene will be much smaller, simpler, steeper and emptier than they are today. They will be more diminished in size and heavily fragmented (especially in lowland wet forests), have reduced structural and species complexity, be increasingly restricted to steeper, less accessible areas, and be missing many heavily hunted species. These changes, in turn, will greatly reduce the quality and quantity of ecosystem services that tropical forests can provide. Driving these changes will be continued clearance for farming and monoculture forest plantations, unsustainable selective logging, overhunting, and, increasingly, climate change. Concerted action by local and indigenous communities, environmental groups, governments, and corporations can reverse these trends and, if successful, provide future generations with a tropical forest estate that includes a network of primary forest reserves robustly defended from threats, recovering logged and secondary forests, and resilient community forests managed for the needs of local people. Realizing this better future for tropical forests and people will require formalisation of land tenure for local and indigenous communities, better-enforced environmental laws, the widescale roll-out of payments for ecosystem service schemes, and sustainable intensification of under-yielding farmland, as well as global-scale societal changes, including reduced consumerism, meat consumption, fossil fuel reliance, and population growth. But the time to act is now, while the opportunity remains to protect a semblance of intact, hyperdiverse tropical forests.

Parasitology ; 146(1): 50-73, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29921333


The importance of parasites as a selective force in host evolution is a topic of current interest. However, short-term ecological studies of host-parasite systems, on which such studies are usually based, provide only snap-shots of what may be dynamic systems. We report here on four surveys, carried out over a period of 12 years, of helminths of spiny mice (Acomys dimidiatus), the numerically dominant rodents inhabiting dry montane wadis in the Sinai Peninsula. With host age (age-dependent effects on prevalence and abundance were prominent) and sex (female bias in abundance in helminth diversity and in several taxa including Cestoda) taken into consideration, we focus on the relative importance of temporal and spatial effects on helminth infracommunities. We show that site of capture is the major determinant of prevalence and abundance of species (and higher taxa) contributing to helminth community structure, the only exceptions being Streptopharaus spp. and Dentostomella kuntzi. We provide evidence that most (notably the Spiruroidea, Protospirura muricola, Mastophorus muris and Gongylonema aegypti, but with exceptions among the Oxyuroidae, e.g. Syphacia minuta), show elements of temporal-site stability, with a rank order of measures among sites remaining similar over successive surveys. Hence, there are some elements of predictability in these systems.

Helmintíase Animal/epidemiologia , Helmintíase Animal/parasitologia , Murinae/parasitologia , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/parasitologia , Fatores Etários , Animais , Distribuição Binomial , Egito/epidemiologia , Feminino , Masculino , Prevalência , Fatores Sexuais , Análise Espacial , Fatores de Tempo