Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
J Plant Physiol ; 257: 153328, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373828


Anthocyanidins are important pigments that cause plant tissues to develop colors. They have attracted much attention due to their crucial regulatory roles in plant growth as well as their health benefits. In order to reveal the molecular mechanism of anthocyanidin synthesis and regulation in purple corn (Zea mays L.) in this study, purple corn 963 was used to compare differences in gene expression during three stages of grain development by transcriptome analysis. A total of 17,168 differentially expressed genes (DEGs) (7564 up-regulated and 9604 down-regulated DGEs) were identified. The DEGs were significantly enriched in "Phenylpropanoid biosynthesis", "Biosynthesis of secondary metabolites", and "Plant hormone signal transduction". In addition, 72 % of the structural genes that regulate anthocyanidin synthesis were up-regulated, and the transcription factors related to the accumulation of anthocyanidins were enriched during grain development. Moreover, the differential expression of phytohormone genes might also be an important factor in anthocyanidin accumulation. Transcriptomic analysis presents a molecular basis for the study of grain color changes in the three stages of grain development, and provides information for further research on the mechanism of anthocyanidin synthesis.

Front Plant Sci ; 11: 574316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983222


Arabidopsis thaliana ENO2 (AtENO2) encodes two proteins AtENO2 (enolase) and AtMBP-1 (c-Myc binding protein 1-like). The loss of AtENO2 function causes the constitutive developmental defects which are correlated with reduced enolase activity, but not AtMBP-1 transcript abundance. However, the regulation mechanism of AtENO2 on the seed properties is still not clear. In this study, we found that the mutation of AtENO2 reduced the seed size and weight. The level of glucose in seed was significantly elevated but that of starch was decreased in AtENO2 mutants compared to WT plants. We also found that AtENO2 mutation reduced the content of cytokinin which resulted in smaller cotyledons. The RNA-seq data showed that there were 1892 differentially expressed genes and secondary metabolic pathways were significantly enriched. Instead of AtMBP-1, AtENO2 protein interacted with AtbZIP75 which may mediate the secondary metabolism. Therefore, ENO2 alters the size and weight of seeds which is not only regulated by the content of cytokinin and secondary metabolism, but may be affected by the interaction of ENO2 and bZIP57. These results are helpful to understand the novel function of AtENO2 which provide a foundation for further exploration of the key candidate genes for crop breeding.