Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 171: 75-83, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33753209

RESUMO

Kindling results in abnormal synaptic potentiation and significant impairment in learning and memory. Electromagnetic field (EMF) effects on learning and memory in kindled animals and its effects on hippocampal neural activity are largely unknown. In the current study, the effects of EMF on learning and memory, as well as hippocampal synaptic plasticity, in kindled rats were investigated. EMF (10 mT; 100 Hz) was applied to fully kindled animals one hour/day for a period of one week. The behavioral and electrophysiological studies were performed 24 h following the EMF application. The kindled rats showed spatial learning deficits during the training phase of the Morris water maze (MWM) test. Moreover, there were increments in escape latency and path length compared to the sham group. The kindled rats spent less time in the target-quadrant probe test, indicating spatial memory impairment. Applying EMF to the KEMF group (kindling + EMF) restored learning and memory, and decreased escape latency and path length significantly compared to the kindled group. EMF alone had no significant effects on the learning and memory parameters. Based on the open field (OF) test results, EMF alone in the EMF group, but not in the kindled or the KEMF groups, decreased the total traveled distance and increased the spent time in the peripheral zone, compared to the sham group. Based on electrophysiological results, applying EMF in the KEMF group returned the ability of synaptic potentiation to the hippocampal CA1 area and high-frequency stimulation induced long-term potentiation (LTP). Accordingly, EMF can be considered a potential therapy for seizure-induced deficits in learning and memory.

2.
Brain Res ; 1758: 147368, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582121

RESUMO

Allergic rhinitis (AR) is a chronic inflammatory disease frequently associated with a deficit in learning and memory. Working memory is an important system for decision making and guidance, which depends on interactions between the ventral hippocampus (vHipp) and the prelimbic prefrontal cortex (plPFC). It is still unclear whether AR influences the activity and coupling of these brain areas, which consequently may impair working memory. The current study aimed to examine alterations of the vHipp-plPFC circuit in a rat model of AR. Our results show decreased working memory performance in AR animals, accompanied by a reduction of theta and gamma oscillations in plPFC. Also, AR reduces coherence between vHipp and plPFC in both theta and gamma frequency bands. Cross-frequency coupling analyses confirmed a reduced interaction between hippocampal theta and plPFC gamma oscillations. Granger causality analysis revealed a reduction in the causal effects of vHipp activity on plPFC oscillations and vice versa. A significant correlation was found between working memory performance with disruption of functional connectivity in AR animals. In summary, our data show that in AR, there is a deficit of functional coupling between hippocampal and prefrontal network, and suggest that this mechanism might contribute to working memory impairment in individuals with AR.

3.
Respir Physiol Neurobiol ; 287: 103627, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33516946

RESUMO

Mechanical ventilation (MV) can result in long-term brain impairments that are resistant to treatment. The mechanisms underlying MV-induced brain function impairment remain unclear. Since nasal airflow modulates brain activity, here we evaluated whether reinstating airflow during MV could influence the memory performance of rats after recovery. Rats were allocated into two study groups: one group received rhythmic air-puff into the nasal cavity during MV and a control group that underwent ventilation without air-puff. During MV, air-puffs induced time-locked event potentials in OB, mPFC and vHPC and significantly increased the oscillatory activity at the air-puff frequency. Furthermore, in mPFC and vHPC, (but not in OB), delta and theta oscillations were more prominent during air-puff application. After recovery, working memory performance was significantly higher in the air-puff group compared to control. Our study thus suggests a promising non-invasive brain stimulation approach to alleviate the neurological complications of prolonged mechanical ventilation.

4.
Sci Rep ; 10(1): 21261, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277523

RESUMO

This paper reports on the design, development, and test of a multi-channel wireless micro-electrocorticography (µECoG) system. The system consists of a semi-implantable, ultra-compact recording unit and an external unit, interfaced through a 2.4 GHz radio frequency data telemetry link with 2 Mbps (partially used) data transfer rate. Encased in a 3D-printed 2.9 cm × 2.9 cm × 2.5 cm cubic package, the semi-implantable recording unit consists of a microelectrode array, a vertically-stacked PCB platform containing off-the-shelf components, and commercially-available small-size 3.7-V, 50 mAh lithium-ion batteries. Two versions of microelectrode array were developed for the recording unit: a rigid 4 × 2 microelectrode array, and a flexible 12 × 6 microelectrode array, 36 of which routed to bonding pads for actual recording. The external unit comprises a transceiver board, a data acquisition board, and a host computer, on which reconstruction of the received signals is performed. After development, assembly, and integration, the system was tested and validated in vivo on anesthetized rats. The system successfully recorded both spontaneous and evoked activities from the brain of the subject.

5.
Basic Clin Neurosci ; 11(3): 333-347, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963726

RESUMO

Introduction: In this study, the role of A1 adenosine receptors in improving the effect of Low-Frequency Electrical Stimulation (LFS) on seizure-induced hyperexcitability of hippocampal CA1 pyramidal neurons was investigated. Methods: A semi-rapid hippocampal kindling model was used to induce seizures in male Wistar rats. Examination of the electrophysiological properties of CA1 pyramidal neurons of the hippocampus using whole-cell patch-clamp recording 48 h after the last kindling stimulation revealed that the application of LFS as two packages of stimulations at a time interval of 6 h for two consecutive days could significantly restore the excitability CA1 pyramidal neurons evidenced by a decreased in the of the number of evoked action potentials and enhancement of amplitude, maximum rise slope and decay slope of the first evoked action potential, rheobase, utilization time, adaptation index, first-spike latency, and post-AHP amplitude. Selective locked of A1 receptors by the administration of 8-Cyclopentyl-1,3-dimethylxanthine (1 µM, 1 µl, i.c.v.) before applying each LFS package, significantly reduced LFS effectiveness in recovering these parameters. Results: On the other hand, selective activation of A1 receptors by an injection of N6-cyclohexyladenosine (10 µM, 1 µl, i.c.v.), instead of LFS application, could imitate LFS function in improving these parameters. Conclusion: It is suggested that LFS exerts its efficacy on reducing the neuronal excitability, partially by activating the adenosine system and activating its A1 receptors.

6.
Front Neurosci ; 14: 564, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625049

RESUMO

Alzheimer disease (AD) is a complex neurodegenerative disorder with no definite treatment. The expression of miR-29 family is significantly reduced in AD, suggesting a part for the family members in pathogenesis of the disease. The recent emergence of microRNA (miRNA)-based therapeutic approaches is emphasized on the efficiency of miRNA transfer to target cells. The endogenously made secretory vesicles could provide a biological vehicle for drug delivery. Characteristics such as small sizes, the ability to cross the blood-brain barrier, the specificity in binding to the right target cells, and most importantly the capacity to be engineered as drug carriers have made exosomes desirable vehicles to deliver genetic materials to the central nervous system. Here, we transfected rat bone marrow mesenchymal stem cells and HEK-293T cells (human embryonic kidney 293 cells) with recombinant expression vectors, carrying either mir-29a or mir-29b precursor sequences. A significant overexpression of miR-29 and downregulation of their targets genes, BACE1 (ß-site amyloid precursor protein cleaving enzyme 1) and BIM [Bcl-2 interacting mediator of cell death (BCL2-like 11)], were confirmed in the transfected cells. Then, we confirmed the packaging of miR-29 in exosomes secreted from the transfected cells. Finally, we investigated a possible therapeutic effect of the engineered exosomes to reduce the pathological effects of amyloid-ß (Aß) peptide in a rat model of AD. Aß-treated model rats showed some deficits in spatial learning and memory. However, in animals injected with miR-29-containing exosomes at CA1 (cornu ammonis area), the aforementioned impairments were prevented. In conclusion, our findings provide a new approach for the packaging of miR-29 in exosomes and that the engineered exosomes might have a therapeutic potential in AD.

7.
Iran J Basic Med Sci ; 23(4): 431-438, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32489557

RESUMO

Objectives: Cell therapy has provided clinical applications to the treatment of motor neuron diseases. The current obstacle in stem cell therapy is to direct differentiation of stem cells into neurons in the neurodegenerative disorders. Biomaterial scaffolds can improve cell differentiation and are widely used in translational medicine and tissue engineering. The aim of this study was to compare the efficiency of two-dimensional with a three-dimensional culture system in their ability to generate functional motor neuron-like cells from adipose-derived stem cells. Materials and Methods: We compared motor neuron-like cells derived from rat adipose tissue in differentiation, adhesion, proliferation, and functional properties on two-dimensional with three-dimensional culture systems. Neural differentiation was analyzed by immunocytochemistry for immature (Islet1) and mature (HB9, ChAT, and synaptophysin) motor neuron markers. Results: Our results indicated that the three-dimensional environment exhibited an increase in the number of Islet1. In contrast, two-dimensional culture system resulted in more homeobox gene (HB9), Choline Acetyltransferase (ChAT), and synaptophysin positive cells. The results of this investigation showed that proliferation and adhesion of motor neuron-like cells significantly increased in three-dimensional compared with two-dimensional environments. Conclusion: The findings of this study suggested that three-dimension may create a proliferative niche for motor neuron-like cells. Overall, this study strengthens the idea that three-dimensional culture may mimic neural stem cell environment for neural tissue regeneration.

8.
Iran J Basic Med Sci ; 23(2): 173-177, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32405359

RESUMO

Objectives: Seizure detection during online recording of electrophysiological parameters is very important in epileptic patients. In the present study, online analysis of field potential recordings was used for detecting spontaneous seizures in epileptic animals. Materials and Methods: Epilepsy was induced in rats by pilocarpine injection. During the chronic period of the pilocarpine model, local field potential (LFP) recording was run for at least 24 hr. At the same time, video monitoring of the animals was done to determine the real time of seizure occurrence. Both power and sample entropy of LFP were used for online analysis. Results: Obtained results showed that changes in LFP power are a better index for seizure detection. In addition, when we used one hundred consecutive epochs (each epoch equals 10 ms) of LFP for data analysis, the best detection was achieved. Conclusion: It may be suggested that power is a suitable parameter for online analysis of LFP in order to detect the spontaneous seizures correctly.

9.
Brain Res ; 1738: 146820, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251663

RESUMO

The mechanisms involved in the anti-seizure effects of low-frequency stimulation (LFS) have not been completely determined. However, Gi-protein-coupled receptors, including D2-like receptors, may have a role in mediating these effects. In the present study, the role of D2-like receptors in LFS' anti-seizure action was investigated. Rats were kindled with semi-rapid (6 stimulations per day), electrical stimulation of the hippocampal CA1 area. In LFS-treated groups, subjects received four trials of LFS at 5 min, 6 h, 24 h, and 30 h following the last kindling stimulation. Each LFS set occurred at 5 min intervals, and consisted of 4 trains. Each train contained 200, 0/1 ms long, monophasic square wave pulses at 1 Hz. Haloperidol (D2-like receptors antagonist, 2 µm) and/or bromocriptine (D2-like receptors agonist 2 µg/µlit) were microinjected into the lateral ventricle immediately after the last kindling, before applying LFS. Obtained results showed that applying LFS in fully-kindled subjects led to a depotentiation-like decrease in kindling-induced potentiation and reduced the amplitude and rise slope of excitatory and inhibitory post-synaptic currents in whole-cell recordings from CA1 pyramidal neurons. In addition, LFS restored the kindling-induced, spatial learning and memory impairments in the Barnes maze test. A D2-like receptor antagonist inhibited these effects of LFS, while a D2-like receptor agonist mimicked these effects. In conclusion, a depotentiation-like mechanism may be involved in restoring LFS' effects on learning and memory, and synaptic plasticity. These effects depend on D2-like receptors activity.

10.
Exp Brain Res ; 238(4): 897-903, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32166345

RESUMO

Herein field recordings were utilized to test the effects of a transient period of pentylenetetrazol (PTZ) treatment on theta-burst long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses as well as RT-PCR was used to investigate the effects of the combination of the pharmacological treatment and the theta-burst LTP induction on the expression of NMDA subunit mRNA in hippocampal slices. The slope of field excitatory postsynaptic potential (fEPSP) was unaffected while the population spike amplitude and area were increased by a transient period of PTZ treatment (3 mM, 10 min). After a theta burst, a brief PTZ exposure can lead to an enhancement of LTP as documented by fEPSP recording. The effect can be blocked by a selective NMDA receptor antagonist DL-AP5. An increase in the expression of GluN2B and GluN2A subunit mRNAs was also shown due to the combined treatment. The results indicate that the combined treatment increases the degree of NMDA-dependent LTP and are in accord with literature data on the subunit alterations of the hippocampal NMDA receptors. Moreover, our experimental paradigm can be used as a new approach to study the relevance of LTP-like phenomena and epileptic mechanisms.

11.
Behav Brain Res ; 387: 112600, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32198106

RESUMO

Despite years of research on pain comorbidity with affective disorders and cognitive deficits, it is still unclear how deficit in attention co-occurs with chronic pain. It is likely that altered neuroplasticity and or dysregulated neurotransmitters induced by chronic pain, at which pain and cognitive processing systems overlap, may have a negative effect on cognitive processing such as attention. One of the main common networks involved in attentional and pain processing is the noradrenergic system originating from the locus coeruleus (LC). We hypothesized that heightened noradrenaline release from LC induced by chronic pain could cause a deficit in visual attention. For this purpose, performance on the 5-choice serial reaction time test (5-CSRTT) was tested in animals with and without a chronic constriction injury and a selective depletion of noradrenaline in the LC. In addition, pain sensitivity was measured via mechanical allodynia and thermal hyperalgesia. We found that the increase in pain sensitivity following chronic pain correlates with a decline in executive functions as measured by 5-CSRTT. This was true in conditions of both low and high attentional demand. Interestingly, a selective depletion of noradrenaline in LC improved the attentional deficits caused by chronic pain. We argue that changes to the noradrenergic system originating in LC can improve deficits in visual attention induced by chronic pain. Deficit in attention is a common comorbidity among patients with chronic pain which adversely affects them in their family and work lives. Patients struggle with functional impairment due to pain, and deficite in attention adds to this dysfunction. Our findings identify the NE-LC system as a key mediator between chronic pain and the attentional deficits associated with this. This finding calls for further investigations concerning treatments related to the noradrenergic system to reduce the malicious effects of chronic pain.

12.
Sci Rep ; 9(1): 19586, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863052

RESUMO

Anxiety is prevalent in asthma, and is associated with disease severity and poor quality of life. However, no study to date provides direct experimental evidence for the effect of allergic inflammation on the structure and function of medial prefrontal cortex (mPFC) and amygdala, which are essential regions for modulating anxiety and its behavioral expression. We assessed the impact of ovalbumin (OVA)-induced allergic inflammation on the appearance of anxiety-like behavior, mPFC and amygdala volumes using MRI, and the mPFC-amygdala circuit activity in sensitized rats. Our findings exhibited that the OVA challenge in sensitized rats induced anxiety-like behavior, and led to more activated microglia and astrocytes in the mPFC and amygdala. We also found a negative correlation between anxiety-like behavior and amygdala volume. Moreover, OVA challenge in sensitized rats was associated with increases in mPFC and amygdala activity, elevation of amygdala delta-gamma coupling, and the enhancement of functional connectivity within mPFC-amygdala circuit - accompanied by an inverted direction of information transferred from the amygdala to the mPFC. We indicated that disrupting the dynamic interactions of the mPFC-amygdala circuit may contribute to the induction of anxiety-related behaviors with asthma. These findings could provide new insight to clarify the underlying mechanisms of allergic inflammation-induced psychiatric disorders related to asthma.

13.
PLoS One ; 14(11): e0224834, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31697763

RESUMO

BACKGROUND: The precise effect of low frequency stimulation (LFS) as a newly postulated, anticonvulsant therapeutic approach on seizure-induced changes in synaptic transmission has not been completely determined. HYPOTHESIS: In this study, the LFS effect on impaired, synaptic plasticity in kindled rats was investigated. METHODS: Hippocampal kindled rats received LFS (4 trials consisting of one train of 200 monophasic square waves, 0.1 ms pulse duration, 1 Hz) on four occasions. LTP induction was evaluated using whole-cell recordings of evoked excitatory and inhibitory post-synaptic potentials (EPSPs and IPSPs respectively) in CA1 neurons in hippocampal slices. In addition, the hippocampal excitatory and inhibitory post-synaptic currents (EPSCs and IPSCs), and the gene expression of NR2A, GluR2 and γ2 were evaluated. RESULTS: LTP induction was attenuated in excitatory and inhibitory synapses in hippocampal slices of kindled rats. When LFS was applied in kindled animals, LTP was induced in EPSPs and IPSPs. Moreover, LFS increased and decreased the threshold intensities of EPSCs and IPSCs respectively. In kindled animals, NR2A gene expression increased, while γ2 gene expression decreased. GluR2 gene expression did not significantly change. Applying LFS in kindled animals mitigated these changes: No significant differences were observed in NR2A, γ2 and GluR2 gene expression in the kindled+LFS and control groups. CONCLUSION: The application of LFS in kindled animals restored LTP induction in both EPSPs and IPSPs, and returned the threshold intensity for induction of EPSCs, IPSCs and gene expression to similar levels as controls.


Assuntos
Estimulação Encefálica Profunda , Neurônios GABAérgicos/fisiologia , Glutamatos/metabolismo , Excitação Neurológica/fisiologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Regulação da Expressão Gênica , Hipocampo/fisiologia , Potenciação de Longa Duração , Masculino , Ratos Wistar , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo
14.
Front Oncol ; 9: 782, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482067

RESUMO

Glioblastoma multiforme (GBM) is a grade 4 and the most aggressive form of glioma, with a poor response to current treatments. The expression of microRNAs (miRNAs) is widely dysregulated in various cancers, including GBM. One of the overexpressed miRNAs in GBM is miR-21 which promotes proliferation, invasion and metastatic behaviors of tumor cells. With a size of 30-100 nm, the extracellular vesicles "exosomes" have emerged as a novel and powerful drug delivering systems. Recently, exosomal transfer of miRNAs or anti-miRNAs to tumor cells has introduced a new approach for therapeutic application of miRNAs to combat cancer. Here, we have tried to down-regulate miR-21 expression in glioma cell lines, U87-MG, and C6, by using engineered exosomes, packed with a miR-21-sponge construct. Our data revealed that the engineered exosomes have the potential to suppress miR-21 and consequently to upregulate miR-21 target genes, PDCD4 and RECK. Interestingly, in cells treated with miR-21-sponge exosomes we observed a decline in proliferation and also an elevation in apoptotic rates. Finally, in a rat model of glioblastoma, administrating exosomes loaded with a miR-21-sponge construct leads to a significant reduction in the volume of the tumors. In brief, our findings suggest a new therapeutic strategy to use engineered exosomes to deliver a miR-21-sponge construct to GBM cells, in order to block its malignant behavior.

15.
J Neural Transm (Vienna) ; 126(11): 1425-1435, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31493096

RESUMO

The locus coeruleus (LC) as a target of addictive drugs receives a dense projection of orexinergic fibres from the lateral hypothalamus (LH) and is accordingly a candidate site for the expression of the somatic aspects of morphine withdrawal. Recently it has been shown that the inhibitory synaptic currents of LC neurons decrease partly through orexin type 1 receptors in the context of naloxone-induced morphine withdrawal; however, its cellular mechanism remains unclear. In this study, whole-cell patch clamp recordings of LC neurons in brainstem slices were used to investigate the impact of protein kinase C (PKC) on GABAergic inhibitory post-synaptic currents (IPSCs) in the context of naloxone-induced morphine withdrawal. Male Wistar rats (P14-P21) received morphine (20 mg/kg, i.p.) daily for 7 consecutive days to induce morphine dependency. Our results showed that the application of PKC inhibitor (Go 6983; 1 µM) alone did not decrease the probability of GABA release in the LC neurons of the morphine-treated rats in the presence of naloxone. Although, Go 6983 reversed the reduction of the amplitude of evoked IPSCs (eIPSCs) and spontaneous IPSCs (sIPSCs) frequency induced by orexin-A but did not change the sIPSCs amplitude. These results indicate that the suppressive effect of orexin-A on IPSCs is probably reversed by PKC inhibitor in the LC neurons of morphine-treated rats in the context of naloxone withdrawal.


Assuntos
Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Locus Cerúleo , Dependência de Morfina , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Orexinas/metabolismo , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Síndrome de Abstinência a Substâncias , Ácido gama-Aminobutírico/metabolismo , Animais , Indóis/farmacologia , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Maleimidas/farmacologia , Morfina/administração & dosagem , Dependência de Morfina/metabolismo , Entorpecentes/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Wistar , Síndrome de Abstinência a Substâncias/metabolismo
16.
PLoS One ; 14(9): e0221978, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509547

RESUMO

Allergic rhinitis is a chronic inflammatory disease of the upper respiratory tract, which is associated with high incidence of anxiety symptom. There is evidence that medial prefrontal cortex modulates anxiety-related behaviors and receives projections from olfactory bulb. Since olfactory dysfunction has been reported in allergic rhinitis, we aimed to evaluate anxiety-like behavior and oscillations of olfactory bulb-medial prefrontal cortex circuit in an animal model of allergic rhinitis. The number of open arm entries in elevated zero maze was significantly reduced in sensitized rats exposed to intranasal ovalbumin compared to the control group, which was indicating the enhancement of anxiety-like behavior in allergic rhinitis animals. Analysis of local field potentials in olfactory bulb and medial prefrontal cortex during immobility and exploration state showed that anxiety-like behavior induced by allergic rhinitis was in association with increased activity of medial prefrontal cortex and enhancement of olfactory bulb-medial prefrontal cortex coupling in delta and theta bands. Moreover, in allergic rhinitis animals, theta strongly coordinates local gamma activity in olfactory bulb and medial prefrontal cortex, which means to have a strong local theta/gamma coupling. We suggested that disruption of olfactory bulb-medial prefrontal cortex circuit due to allergic reactions might have a governing role for inducing anxiety-like behavior in the allergic rhinitis experimental model.


Assuntos
Ansiedade/fisiopatologia , Bulbo Olfatório/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Rinite Alérgica/psicologia , Potenciais de Ação , Animais , Comportamento Animal , Conectoma , Modelos Animais de Doenças , Masculino , Ovalbumina/efeitos adversos , Ratos , Rinite Alérgica/induzido quimicamente , Rinite Alérgica/fisiopatologia , Organismos Livres de Patógenos Específicos
17.
Brain Res Bull ; 148: 109-117, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30902574

RESUMO

In addition to its anticonvulsant effect, low frequency stimulation (LFS) improves learning and memory in kindled animals. In the present study, the role of 5-HT1A receptors in mediating LFS' improving effect on spatial learning and memory was investigated in amygdala-kindled rats. Amygdala kindling was conducted in a semi-rapid kindling stimulations (12 stimulations per day) in male Wistar rats. LFS (4 trains of 0.1 ms pulse duration at 1 Hz, 200 pulses, 50-150 µA, at 5 min intervals) was applied after termination of kindling stimulations. NAD-299 (a selective 5-HT1A receptor antagonist; 2.5 and 5 µg/µl) was microinjected into the hippocampal CA1 before applying LFS. The Morris water maze, and novel object recognition tests were conducted after the last kindling stimulation. Hippocampal samples were also prepared, and 5-HT1A receptor gene expression levels were assessed using quantitative RT-PCR. In kindled animals, LFS reduced impairments in spatial learning and memory in the Morris water maze and novel object recognition tests. Microinjection of NAD doses of 5 µg/µl reduced the effects of LFS on learning and memory. The gene expression level of 5-HT1A receptors increased significantly in the hippocampus of amygdala-kindled rats. However, LFS applied after kindling stimulations inhibited this effect. It seems that activation of 5-HT1A receptors in the CA1 field is necessary for LFS' improving effects on spatial learning and memory in kindled animals; although surprisingly, LFS application prevented the elevation in gene expression of 5-HT1A receptors in kindled animals.


Assuntos
Transtornos da Memória/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Anticonvulsivantes/farmacologia , Região CA1 Hipocampal/metabolismo , Modelos Animais de Doenças , Estimulação Elétrica , Terapia por Estimulação Elétrica/métodos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Excitação Neurológica/efeitos dos fármacos , Masculino , Memória , Ratos , Ratos Wistar , Convulsões/metabolismo , Aprendizagem Espacial
18.
Neuroscience ; 406: 176-185, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30872164

RESUMO

Low frequency stimulation (LFS) has anticonvulsant effect and may restore the ability of long-term potentiation (LTP) to the epileptic brain. The mechanisms of LFS have not been completely determined. Here, we showed that LTP induction was impaired following in vitro epileptiform activity (EA) in hippocampal slices, but application of LFS prevented this impairment. Then, we investigated the involvement of α-adrenergic receptors in this effect of LFS. EA was induced by increasing the extracellular K+ concentration to 12 mM and EPSPs were recorded from CA1 neurons in whole cell configuration. EA increased EPSP amplitude from 6.9 ±â€¯0.7 mV to 9.6 ±â€¯0.6 mV. For LTP induction, the Schaffer collaterals were stimulated by high frequency stimulation (HFS; two trains of 100 pulses, 100 Hz at the interval of 20 s). The application of HFS resulted in 40.9 ±â€¯2.3% increase in the amplitude of EPSPs. However, following EA, HFS could not produce any significant changes in EPSP amplitude. Administration of LFS (1 Hz, 900 pulses) to Schaffer collaterals at the beginning of EA restored LTP induction to the hippocampal slices and HFS increased the EPSPs amplitude up to 41.7 ±â€¯3.1% of baseline. When slices were perfused by prazosin (α1-adrenergic receptor antagonist; 10 µM) before and during LFS application, LFS improvement on LTP induction was reduced significantly. Perfusion of slices by yohimbine (α2-adrenergic receptor antagonist; 5 µM) had no effect on LFS action. Therefore, it may be concluded that following epileptiform activity, LFS can improve the impairment of LTP generation through α1, but not α2, adrenergic receptor activity.


Assuntos
Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Receptores Adrenérgicos alfa 2/fisiologia , Convulsões/fisiopatologia , Sinapses/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Estimulação Elétrica , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Convulsões/prevenção & controle , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
19.
Neuroscience ; 406: 234-248, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30885638

RESUMO

Low-frequency stimulation has demonstrated promising seizure suppression in animal models of epilepsy, while the mechanism of the effect is still debated. Changes in intrinsic properties have been recognized as a prominent pathophysiologically relevant feature of numerous neurological disorders including epilepsy. Here, it was evaluated whether LFS can preserve the intrinsic neuronal electrophysiological properties in a rat model of epilepsy, focusing on the possible involvement of voltage-gated Ca2+ channels. The amygdala kindling model was induced by 3 s monophasic square wave pulses (50 Hz, 1 ms duration, 12times/day at 5 min intervals). Both LFS alone and kindled plus LFS (KLFS) groups received four packages of LFS (each consisting of 200 monophasic square pulses, 0.1 ms pulse duration at 1 Hz with the after discharge threshold intensity), which in KLFS rats was applied immediately after kindling induction. Whole-cell patch-clamp recordings were made in the presence of fast synaptic blockers 24 h after the last kindling stimulations or following kindling stimulations plus LFS application. In the KLFS group, both the rebound excitation and kindling-induced intrinsic hyperexcitability were decreased, associated with a regular intrinsic firing as indicated by a lower coefficient of variation. The amplitude of afterdepolarization (ADP) and its area under the curve were both decreased in the KLFS group compared to the kindled group. LFS prevented the increasing effect of kindling on Ca2+ currents in the KLFS group. Findings provided evidence for a novel form of epileptiform activity suppression by LFS in the presence of synaptic blockade possibly by decreasing Ca2+ currents.


Assuntos
Região CA1 Hipocampal/fisiologia , Canais de Cálcio/fisiologia , Excitação Neurológica/fisiologia , Células Piramidais/fisiologia , Animais , Região CA1 Hipocampal/citologia , Estimulação Elétrica/métodos , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
20.
Basic Clin Neurosci ; 10(5): 461-468, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32284835

RESUMO

Introduction: Synaptic plasticity has been suggested as the primary physiological mechanism underlying memory formation. Many experimental approaches have been used to investigate whether the mechanisms underlying Long-Term Potentiation (LTP) are activated during learning. Nevertheless, little evidence states that hippocampal-dependent learning triggers synaptic plasticity. In this study, we investigated if learning and memory in the Barnes maze test are accompanied by the occurrence of LTP in Schaffer collateral to CA1 synapses in freely moving rats. Methods: The rats were implanted with a recording electrode in stratum radiatum and stimulating electrodes in Schaffer collaterals of the CA1 region in the dorsal hippocampus of the right hemisphere. Following the recovery period of at least 10 days, field potentials were recorded in freely moving animals before and after training them in Barnes maze as a hippocampal-dependent spatial learning and memory test. The slope of extracellular field Excitatory Postsynaptic Potentials (fEPSPs) was measured before and after the Barnes maze test. Results: The results showed that the fEPSP slope did not change after learning and memory in the Barnes maze test, and this spatial learning did not result in a change in synaptic potentiation in the CA1 region of the hippocampus. Conclusion: Spatial learning and memory in the Barnes maze test are not accompanied by LTP induction in Schaffer collateral-CA1 synapses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...