Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 105(4): 844-853, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585108

RESUMO

Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.

2.
Am J Hum Genet ; 105(4): 689-705, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495489

RESUMO

Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.

3.
Am J Hum Genet ; 105(3): 606-615, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474318

RESUMO

Cerebellar malformations are diverse congenital anomalies frequently associated with developmental disability. Although genetic and prenatal non-genetic causes have been described, no systematic analysis has been performed. Here, we present a large-exome sequencing study of Dandy-Walker malformation (DWM) and cerebellar hypoplasia (CBLH). We performed exome sequencing in 282 individuals from 100 families with DWM or CBLH, and we established a molecular diagnosis in 36 of 100 families, with a significantly higher yield for CBLH (51%) than for DWM (16%). The 41 variants impact 27 neurodevelopmental-disorder-associated genes, thus demonstrating that CBLH and DWM are often features of monogenic neurodevelopmental disorders. Though only seven monogenic causes (19%) were identified in more than one individual, neuroimaging review of 131 additional individuals confirmed cerebellar abnormalities in 23 of 27 genetic disorders (85%). Prenatal risk factors were frequently found among individuals without a genetic diagnosis (30 of 64 individuals [47%]). Single-cell RNA sequencing of prenatal human cerebellar tissue revealed gene enrichment in neuronal and vascular cell types; this suggests that defective vasculogenesis may disrupt cerebellar development. Further, de novo gain-of-function variants in PDGFRB, a tyrosine kinase receptor essential for vascular progenitor signaling, were associated with CBLH, and this discovery links genetic and non-genetic etiologies. Our results suggest that genetic defects impact specific cerebellar cell types and implicate abnormal vascular development as a mechanism for cerebellar malformations. We also confirmed a major contribution for non-genetic prenatal factors in individuals with cerebellar abnormalities, substantially influencing diagnostic evaluation and counseling regarding recurrence risk and prognosis.

4.
Brain ; 142(11): 3351-3359, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504246

RESUMO

Using trio exome sequencing, we identified de novo heterozygous missense variants in PAK1 in four unrelated individuals with intellectual disability, macrocephaly and seizures. PAK1 encodes the p21-activated kinase, a major driver of neuronal development in humans and other organisms. In normal neurons, PAK1 dimers reside in a trans-inhibited conformation, where each autoinhibitory domain covers the kinase domain of the other monomer. Upon GTPase binding via CDC42 or RAC1, the PAK1 dimers dissociate and become activated. All identified variants are located within or close to the autoinhibitory switch domain that is necessary for trans-inhibition of resting PAK1 dimers. Protein modelling supports a model of reduced ability of regular autoinhibition, suggesting a gain of function mechanism for the identified missense variants. Alleviated dissociation into monomers, autophosphorylation and activation of PAK1 influences the actin dynamics of neurite outgrowth. Based on our clinical and genetic data, as well as the role of PAK1 in brain development, we suggest that gain of function pathogenic de novo missense variants in PAK1 lead to moderate-to-severe intellectual disability, macrocephaly caused by the presence of megalencephaly and ventriculomegaly, (febrile) seizures and autism-like behaviour.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31441589

RESUMO

Megalencephaly (MEG) is a developmental abnormality of brain growth characterized by early onset, often progressive, brain overgrowth. Focal forms of megalencephaly associated with cortical dysplasia, such as hemimegalencephaly and focal cortical dysplasia, are common causes of focal intractable epilepsy in children. The increasing use of high throughput sequencing methods, including high depth sequencing to more accurately detect and quantify mosaic mutations, has allowed us to identify the molecular etiologies of many MEG syndromes, including most notably the PI3K-AKT-MTOR related MEG disorders. Thorough molecular and clinical characterization of affected individuals further allow us to derive preliminary genotype-phenotype correlations depending on the gene, mutation, level of mosaicism, and tissue distribution. Our review of published data on these disorders so far shows that mildly activating variants (that are typically constitutional or germline) are associated with diffuse megalencephaly with intellectual disability and/or autism spectrum disorder; moderately activating variants (that are typically high-level mosaic) are associated with megalencephaly with pigmentary abnormalities of the skin; and strongly activating variants (that are usually very low-level mosaic) are associated with focal brain malformations including hemimegalencephaly and focal cortical dysplasia. Accurate molecular diagnosis of these disorders is undoubtedly crucial to more optimally treat children with these disorders using PI3K-AKT-MTOR pathway inhibitors.

6.
Genet Med ; 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31263215

RESUMO

PURPOSE: Haploinsufficiency of DYRK1A causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with DYRK1A variants. METHODS: A large database of clinical exome sequencing (ES) was queried for de novo DYRK1A variants and CAKUT/GD phenotypes were characterized. Xenopus laevis (frog) was chosen as a model organism to assess Dyrk1a's role in renal development. RESULTS: Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in DYRK1A had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in Xenopus embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human DYRK1A RNA, but not with DYRK1AR205* or DYRK1AL245R RNA. CONCLUSION: Evidence supports routine GU screening of all individuals with de novo DYRK1A pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in Xenopus substantiate a novel role for DYRK1A in GU development.

7.
Am J Med Genet A ; 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30513141

RESUMO

CACNA1C (NM_000719.6) encodes an L-type calcium voltage-gated calcium channel (Cav 1.2), and pathogenic variants have been associated with two distinct clinical entities: Timothy syndrome and Brugada syndrome. Thus far, CACNA1C has not been reported as a gene associated with epileptic encephalopathy and is less commonly associated with epilepsy. We report three individuals from two families with variants in CACNA1C. Patient 1 presented with neonatal onset epileptic encephalopathy (NOEE) and was found to have a de novo missense variant in CACNA1C (c.4087G>A (p.V1363M)) on exome sequencing. In Family 2, Patient 2 presented with congenital cardiac anomalies and cardiomyopathy and was found to have a paternally inherited splice site variant, c.3717+1_3717+2insA, on a cardiomyopathy panel. Her father, Patient 3, presented with learning difficulties, late-onset epilepsy, and congenital cardiac anomalies. Family 2 highlights variable expressivity seen within a family. This case series expands the clinical and molecular phenotype of CACNA1C-related disorders and highlights the need to include CACNA1C on epilepsy gene panels.

8.
Am J Hum Genet ; 103(5): 752-768, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388402

RESUMO

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.

9.
Am J Hum Genet ; 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30471716

RESUMO

To date, mutations in 15 actin- or microtubule-associated genes have been associated with the cortical malformation lissencephaly and variable brainstem hypoplasia. During a multicenter review, we recognized a rare lissencephaly variant with a complex brainstem malformation in three unrelated children. We searched our large brain-malformation databases and found another five children with this malformation (as well as one with a less severe variant), analyzed available whole-exome or -genome sequencing data, and tested ciliogenesis in two affected individuals. The brain malformation comprised posterior predominant lissencephaly and midline crossing defects consisting of absent anterior commissure and a striking W-shaped brainstem malformation caused by small or absent pontine crossing fibers. We discovered heterozygous de novo missense variants or an in-frame deletion involving highly conserved zinc-binding residues within the GAR domain of MACF1 in the first eight subjects. We studied cilium formation and found a higher proportion of mutant cells with short cilia than of control cells with short cilia. A ninth child had similar lissencephaly but only subtle brainstem dysplasia associated with a heterozygous de novo missense variant in the spectrin repeat domain of MACF1. Thus, we report variants of the microtubule-binding GAR domain of MACF1 as the cause of a distinctive and most likely pathognomonic brain malformation. A gain-of-function or dominant-negative mechanism appears likely given that many heterozygous mutations leading to protein truncation are included in the ExAC Browser. However, three de novo variants in MACF1 have been observed in large schizophrenia cohorts.

10.
Am J Med Genet A ; 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30063105

RESUMO

PIK3CA-related overgrowth spectrum (PROS) refers to a group of disorders of segmental overgrowth of a wide variety of tissues as well as venous and lymphatic malformations. Clinical and molecular diagnosis can be challenging due to phenotypic heterogeneity and difficulties detecting low-level mosaicism using standard methods. Here, we report a patient with a severe presentation of PIK3CA-related overgrowth with analysis of 27 posthumously collected tissues by droplet digital polymerase chain reaction (PCR) at autopsy. This patient had a complicated medical course, with coagulopathy, ischemic brain injury, and sepsis resulting in multi-organ failure and death at age 2 months despite sirolimus therapy. Five of the 27 tissues analyzed possessed a mosaic PIK3CA mutation (p.E545K), with mutation levels ranging from 3 to 20% across affected tissues. We found no correlation between tissue-specific disease severity and mutation levels, likely reflecting sampling limitations. We also tested a series of 22 individuals with somatic overgrowth and/or vascular-lymphatic malformations using a targeted next generation sequencing panel and found PIK3CA mutations in nine individuals, identifying three novel PIK3CA variants. This report expands the clinical and molecular spectrum of PROS, emphasizes that different molecular methods can be complimentary in the diagnosis of these disorders, and highlights the risk of coagulopathy in a subset of patients with PIK3CA-related overgrowth.

11.
Hum Mutat ; 39(9): 1226-1237, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29897170

RESUMO

Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall-Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.

12.
Genet Med ; 20(11): 1354-1364, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29671837

RESUMO

PURPOSE: To estimate diagnostic yield and genotype-phenotype correlations in a cohort of 811 patients with lissencephaly or subcortical band heterotopia. METHODS: We collected DNA from 756 children with lissencephaly over 30 years. Many were tested for deletion 17p13.3 and mutations of LIS1, DCX, and ARX, but few other genes. Among those tested, 216 remained unsolved and were tested by a targeted panel of 17 genes (ACTB, ACTG1, ARX, CRADD, DCX, LIS1, TUBA1A, TUBA8, TUBB2B, TUBB, TUBB3, TUBG1, KIF2A, KIF5C, DYNC1H1, RELN, and VLDLR) or by whole-exome sequencing. Fifty-five patients studied at another institution were added as a validation cohort. RESULTS: The overall mutation frequency in the entire cohort was 81%. LIS1 accounted for 40% of patients, followed by DCX (23%), TUBA1A (5%), and DYNC1H1 (3%). Other genes accounted for 1% or less of patients. Nineteen percent remained unsolved, which suggests that several additional genes remain to be discovered. The majority of unsolved patients had posterior pachygyria, subcortical band heterotopia, or mild frontal pachygyria. CONCLUSION: The brain-imaging pattern correlates with mutations in single lissencephaly-associated genes, as well as in biological pathways. We propose the first LIS classification system based on the underlying molecular mechanisms.

13.
Am J Hum Genet ; 102(2): 309-320, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29394990

RESUMO

Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation.

14.
Brain ; 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29365063

RESUMO

Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria.

15.
Am J Med Genet A ; 176(3): 676-681, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29341397

RESUMO

Congenital or infantile hydrocephalus is caused by genetic and non-genetic factors and is highly heterogeneous in etiology. In recent studies, a limited number of genetic causes of hydrocephalus have been identified. To date, recessive mutations in the CCDC88C gene have been identified as a cause of non-syndromic congenital hydrocephalus in three reported families. Here, we report the fourth known family with two affected individuals with congenital hydrocephalus due to a homozygous mutation in the CCDC88C gene identified by whole exome sequencing. Our two newly described children, as well as the previously published ones, all shared several features including severe infantile-onset hydrocephalus, mild to severe intellectual delay, varying degrees of motor delay, and infantile onset seizures. All identified homozygous mutations in CCDC88C abolish the PDZ binding site necessary for proper CCDC88C protein function in the Wnt signaling pathway. Our report further establishes CCDC88C as one of the few known recessive causes of severe prenatal-onset hydrocephalus. Recognition of this syndrome has important diagnostic and genetic implications for families identified in the future.

16.
Am J Med Genet A ; 173(12): 3127-3131, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29048727

RESUMO

The clinical diagnosis of malformations of cortical development (MCDs) is often challenging due to the complexity of the brain malformation by neuroimaging, the rarity of individual malformation syndromes, and the rapidly evolving genetic landscape of these disorders facilitated with the use of Next Generation Sequencing (NGS) methods. While the clinical and molecular diagnosis of severe cortical malformations, such as classic lissencephaly, is often straightforward, the diagnosis of more subtle and complex types of cortical malformations, such as pachygyria and polymicrogyria (PMG), can be more challenging due to limited knowledge regarding their genetic etiologies. Here, we report two individuals with the same de novo KIF5C mutation who present with subtle MCDs, early onset epilepsy and significant neurodevelopmental and behavioral issues including absent language. Our data, combined with the limited literature on KIF5C mutations, to date, support that KIF5C mutations are associated with a neurodevelopmental disorder characterized by infantile onset epilepsy, and subtle but recognizable types of brain malformations. We also show that the spectrum of KIF5C mutations is narrow, as five out of the six identified individuals have mutations affecting amino acid Glu237. Therefore, the identification of the clinical and neuroimaging features of this disorder may strongly facilitate rapid and efficient molecular diagnosis.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Cinesina/genética , Malformações do Desenvolvimento Cortical/genética , Transtornos do Neurodesenvolvimento/genética , Córtex Cerebral/anormalidades , Epilepsia/diagnóstico por imagem , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Linguagem , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Mutação , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética
17.
Brain ; 140(10): 2610-2622, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969385

RESUMO

Mutations of genes within the phosphatidylinositol-3-kinase (PI3K)-AKT-MTOR pathway are well known causes of brain overgrowth (megalencephaly) as well as segmental cortical dysplasia (such as hemimegalencephaly, focal cortical dysplasia and polymicrogyria). Mutations of the AKT3 gene have been reported in a few individuals with brain malformations, to date. Therefore, our understanding regarding the clinical and molecular spectrum associated with mutations of this critical gene is limited, with no clear genotype-phenotype correlations. We sought to further delineate this spectrum, study levels of mosaicism and identify genotype-phenotype correlations of AKT3-related disorders. We performed targeted sequencing of AKT3 on individuals with these phenotypes by molecular inversion probes and/or Sanger sequencing to determine the type and level of mosaicism of mutations. We analysed all clinical and brain imaging data of mutation-positive individuals including neuropathological analysis in one instance. We performed ex vivo kinase assays on AKT3 engineered with the patient mutations and examined the phospholipid binding profile of pleckstrin homology domain localizing mutations. We identified 14 new individuals with AKT3 mutations with several phenotypes dependent on the type of mutation and level of mosaicism. Our comprehensive clinical characterization, and review of all previously published patients, broadly segregates individuals with AKT3 mutations into two groups: patients with highly asymmetric cortical dysplasia caused by the common p.E17K mutation, and patients with constitutional AKT3 mutations exhibiting more variable phenotypes including bilateral cortical malformations, polymicrogyria, periventricular nodular heterotopia and diffuse megalencephaly without cortical dysplasia. All mutations increased kinase activity, and pleckstrin homology domain mutants exhibited enhanced phospholipid binding. Overall, our study shows that activating mutations of the critical AKT3 gene are associated with a wide spectrum of brain involvement ranging from focal or segmental brain malformations (such as hemimegalencephaly and polymicrogyria) predominantly due to mosaic AKT3 mutations, to diffuse bilateral cortical malformations, megalencephaly and heterotopia due to constitutional AKT3 mutations. We also provide the first detailed neuropathological examination of a child with extreme megalencephaly due to a constitutional AKT3 mutation. This child has one of the largest documented paediatric brain sizes, to our knowledge. Finally, our data show that constitutional AKT3 mutations are associated with megalencephaly, with or without autism, similar to PTEN-related disorders. Recognition of this broad clinical and molecular spectrum of AKT3 mutations is important for providing early diagnosis and appropriate management of affected individuals, and will facilitate targeted design of future human clinical trials using PI3K-AKT pathway inhibitors.


Assuntos
Deficiências do Desenvolvimento/genética , Megalencefalia/genética , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Encéfalo/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/patologia , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Imunoprecipitação , Imagem por Ressonância Magnética , Masculino , Megalencefalia/diagnóstico por imagem , Megalencefalia/patologia , Mutagênese Sítio-Dirigida/métodos , Fosfatidilinositóis/metabolismo , Transfecção
18.
Am J Med Genet A ; 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464511

RESUMO

Developmental encephalopathies constitute a broad and genetically heterogeneous spectrum of disorders associated with global developmental delay, intellectual disability, frequent epilepsy, and other neurofunctional abnormalities. Here, we report a male presenting with infantile onset epilepsy and syndromic features resembling Dubowitz syndrome identified to have a de novo PLXNA1 variant by whole exome sequencing. This constitutes the second report of PLXNA1 sequence variation associated with early onset epilepsy, and the first to expand on the clinical features of this emerging disorder. This reports suggests that nonsynonymous de novo sequence variations in PLXNA1 are associated with a novel human phenotype characterized by intractable early onset epilepsy, intellectual disability, and syndromic features.

19.
Am J Med Genet A ; 173(6): 1473-1488, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28440899

RESUMO

Lissencephaly ("smooth brain," LIS) is a malformation of cortical development associated with deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. The LIS spectrum includes agyria, pachygyria, and subcortical band heterotopia. Our first classification of LIS and subcortical band heterotopia (SBH) was developed to distinguish between the first two genetic causes of LIS-LIS1 (PAFAH1B1) and DCX. However, progress in molecular genetics has led to identification of 19 LIS-associated genes, leaving the existing classification system insufficient to distinguish the increasingly diverse patterns of LIS. To address this challenge, we reviewed clinical, imaging and molecular data on 188 patients with LIS-SBH ascertained during the last 5 years, and reviewed selected archival data on another ∼1,400 patients. Using these data plus published reports, we constructed a new imaging based classification system with 21 recognizable patterns that reliably predict the most likely causative genes. These patterns do not correlate consistently with the clinical outcome, leading us to also develop a new scale useful for predicting clinical severity and outcome. Taken together, our work provides new tools that should prove useful for clinical management and genetic counselling of patients with LIS-SBH (imaging and severity based classifications), and guidance for prioritizing and interpreting genetic testing results (imaging based- classification).


Assuntos
Córtex Cerebral/fisiopatologia , Lisencefalia/fisiopatologia , Imagem por Ressonância Magnética , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Criança , Pré-Escolar , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/classificação , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/diagnóstico por imagem , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/fisiopatologia , Feminino , Humanos , Lactente , Recém-Nascido , Lisencefalia/classificação , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Masculino , Proteínas Associadas aos Microtúbulos/genética , Mutação , Neuropeptídeos/genética , Fenótipo , Adulto Jovem
20.
Am J Hum Genet ; 99(5): 1117-1129, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773430

RESUMO

Lissencephaly is a malformation of cortical development typically caused by deficient neuronal migration resulting in cortical thickening and reduced gyration. Here we describe a "thin" lissencephaly (TLIS) variant characterized by megalencephaly, frontal predominant pachygyria, intellectual disability, and seizures. Trio-based whole-exome sequencing and targeted re-sequencing identified recessive mutations of CRADD in six individuals with TLIS from four unrelated families of diverse ethnic backgrounds. CRADD (also known as RAIDD) is a death-domain-containing adaptor protein that oligomerizes with PIDD and caspase-2 to initiate apoptosis. TLIS variants cluster in the CRADD death domain, a platform for interaction with other death-domain-containing proteins including PIDD. Although caspase-2 is expressed in the developing mammalian brain, little is known about its role in cortical development. CRADD/caspase-2 signaling is implicated in neurotrophic factor withdrawal- and amyloid-ß-induced dendritic spine collapse and neuronal apoptosis, suggesting a role in cortical sculpting and plasticity. TLIS-associated CRADD variants do not disrupt interactions with caspase-2 or PIDD in co-immunoprecipitation assays, but still abolish CRADD's ability to activate caspase-2, resulting in reduced neuronal apoptosis in vitro. Homozygous Cradd knockout mice display megalencephaly and seizures without obvious defects in cortical lamination, supporting a role for CRADD/caspase-2 signaling in mammalian brain development. Megalencephaly and lissencephaly associated with defective programmed cell death from loss of CRADD function in humans implicate reduced apoptosis as an important pathophysiological mechanism of cortical malformation. Our data suggest that CRADD/caspase-2 signaling is critical for normal gyration of the developing human neocortex and for normal cognitive ability.


Assuntos
Apoptose , Proteína Adaptadora de Sinalização CRADD/genética , Caspase 2/metabolismo , Cisteína Endopeptidases/metabolismo , Lisencefalia/genética , Megalencefalia/genética , Neurônios/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Caspase 2/genética , Sobrevivência Celular , Clonagem Molecular , Cognição , Cisteína Endopeptidases/genética , Células Dendríticas/metabolismo , Grupos Étnicos/genética , Genes Recessivos , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Células PC12 , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA