Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32129381

RESUMO

Rational design and precise engineering are needed to optimize the structural and chemical parameters of functional materials. In this work, we demonstrate how pre-formed binary metal selenides can be an excellent synthetic choice for the synthesis of ternary coinage metal selenide nanoparticles (NPs) with controlled composition. The mild conditions required to obtain these ternary coinage metal selenide NPs offered an easy synthesis of n% CuAgSe-TiO2 (n = 0.01, 0.1, 0.3 and 1.0 mol%) nanocomposites for photocatalytic applications without compromising the structural and morphological characteristics of TiO2 and without having any organic ligands around the NPs. The use of ternary metal selenide nanocomposites CuAgSe-TiO2 results in a clear improvement in their photocatalytic activity for the photodegradation of formic acid as compared to the well-known benchmark for photocatalysis, TiO2 (P25), and its binary metal selenide nanocomposites Cu2-xSe-TiO2. DFT calculations establish semi-metallic behavior of CuAgSe NPs and show that CuAgSe-TiO2 forms a semimetallic-semiconductor heterojunction allowing a better charge separation to enhance its photocatalytic activity.

2.
Plant Physiol Biochem ; 151: 88-102, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32203884

RESUMO

Global warming has reached an alarming situation, which led to a dangerous climatic condition. The irregular rainfalls and land degradation are the significant consequences of these climatic changes causing a decrease in crop productivity. The effect of drought and its tolerance mechanism, a comparative roots proteomic analysis of chickpea seedlings grown under hydroponic conditions for three weeks, performed at different time points using 2-Dimensional gel electrophoresis (2-DE). After PD-Quest analysis, 110 differentially expressed spots subjected to MALDI-TOF/TOF and 75 spots identified with a significant score. These identified proteins classified into eight categories based on their functional annotation. Proteins involved in carbon and energy metabolism comprised 23% of total identified proteins include mainly glyceraldehyde-3-phosphate dehydrogenase, malate dehydrogenase, transaldolase, and isocitrate dehydrogenase. Proteins related to stress response (heat-shock protein, CS domain protein, and chitinase 2-like) contributed 16% of total protein spots followed by 13% involved in protein metabolism (adenosine kinase 2, and protein disulfide isomerase). ROS metabolism contributed 13% (glutathione S-transferase, ascorbate peroxidase, and thioredoxin), and 9% for signal transduction (actin-101, and 14-3-3-like protein B). Five percent protein identified for secondary metabolism (cinnamoyl-CoA reductase-1 and chalcone-flavononeisomerase 2) and 7% for nitrogen (N) and amino acid metabolism (glutamine synthetase and homocysteine methyltransferase). The abundance of some proteins validated by using Western blotting and Real-Time-PCR. The detailed information for drought-responsive root protein(s) through comparative proteomics analysis can be utilized in the future for genetic improvement programs to develop drought-tolerant chickpea lines.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32152804

RESUMO

Intensification of sodic soil due to increasing pH is an emerging environmental issue. The present study aimed to isolate and characterise alkaline stress-tolerant and plant growth-promoting bacterial strains from moderately alkaline soil (pH 8-9), strongly alkaline soil (pH 9-10), and very strongly alkaline soil (> 10). Total 68 bacteria were isolated, and screened for multiple plant growth promoting (PGP) attributes. Out of total, 42 isolates demonstrating at least three plant growth promoting PGP traits selected for further assays. Then out of 42, 15 bacterial isolates were selected based on enhanced maize plant growth under greenhouse experiment, and 16S rRNA gene sequencing revealed Bacillus spp. as a dominant genus. Furthermore, based on improved seed germination percentage and biomass of maize (Zea mays L.) under alkaline stress conditions Alcaligenes sp. NBRI NB2.5, Bacillus sp. NBRI YE1.3, and Bacillus sp. NBRI YN4.4 bacterial strains were selected, and evaluated for growth-promotion and alkaline stress amelioration under greenhouse condition. Amongst the selected 3 plant growth promoting rhizobacterial (PGPR) strains, Bacillus sp. NBRI YN4.4 significantly improved the photosynthetic pigments and soluble sugar content, and decreased proline level in inoculated maize plants as compared to uninoculated control under stress conditions. Moreover, significantly enhanced soil enzymes such as dehydrogenase, alkaline phosphatase and betaglucosidase due to inoculation of Bacillus sp. NBRI YN4.4 in maize plants grown in alkaline soil attributes to its role in improving the soil health. Therefore, alkaline stress-tolerant PGPR NBRI YN4.4 can be useful for developing strategies for the reclamation of saline/sodic soils and improving the plant growth and soil health in sustainable manner.

4.
Plant Physiol Biochem ; 150: 1-14, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32097873

RESUMO

Plant growth-promoting rhizobacteria (PGPR) improve plant health under various biotic and abiotic stresses. However, the underlying mechanisms of the protective effects of PGPR in deficit water stress (WS) remain less explored. This study aimed to characterize the role of Ochrobactrum sp. NBRISH6 inoculation on maize (Zea mays "Maharaja") under WS conditions using multiple approaches such as physiological, anatomical, metabolic, and molecular. The effect of NBRISH6 inoculation using maize as a host plant was characterized under greenhouse conditions in deficit water stress. Results from this study demonstrated that NBRISH6 significantly lowered the expression of genes involved in the abscisic acid cycle, deficit water stress-response, osmotic stress, and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and polyphenol oxidase). Phytohormones, i.e. indole acetic acid (IAA) and salicylic acid (SA) levels, intercellular CO2 concentration, metabolites such as simple sugars, amino acids, aliphatic hydrocarbons, and the number of shrunken pith cells modulated in maize roots inoculated with NBRISH6. The NBRISH6 inoculation also improved the plant vegetative properties (root length, 33.80%; shoot length, 20.68%; root dry weight, 39.21%; shoot dry weight, 61.95%), shoot nutrients, xylem cells, root hairs, vapor pressure deficit (75%), intrinsic water-use efficiency (41.67%), photosynthesis rate (83.33%), and total chlorophyll (16.15%) as compared to the respective stress controls. This study provides valuable insights into mechanistic functions of PGPR in WS amelioration and promoting plant physiological response.

5.
J Hazard Mater ; 390: 122122, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-32006842

RESUMO

Arsenic (As), a chronic poison and non-threshold carcinogen, is a food chain contaminant in rice, posing yield losses as well as serious health risks. Selenium (Se), a trace element, is a known antagonist of As toxicity. In present study, RNA seq. and proteome profiling, along with morphological analyses were performed to explore molecular cross-talk involved in Se mediated As stress amelioration. The repair of As induced structural deformities involving disintegration of cell wall and membranes were observed upon Se supplementation. The expression of As transporter genes viz., NIP1;1, NIP2;1, ABCG5, NRAMP1, NRAMP5, TIP2;2 as well as sulfate transporters, SULTR3;1 and SULTR3;6, were higher in As + Se compared to As alone exposure, which resulted in reduced As accumulation and toxicity. The higher expression of regulatory elements like AUX/IAA, WRKY and MYB TFs during As + Se exposure was also observed. The up-regulation of GST, PRX and GRX during As + Se exposure confirmed the amelioration of As induced oxidative stress. The abundance of proteins involved in photosynthesis, energy metabolism, transport, signaling and ROS homeostasis were found higher in As + Se than in As alone exposure. Overall, present study identified Se responsive pathways, genes and proteins involved to cope-up with As toxicity in rice.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31669661

RESUMO

Betula utilis (BU), an important medicinal plant that grows in high altitudes of the Himalayan region, has been utilized traditionally due to it's antibacterial, hepatoprotective, and anti-tumor properties. Here, we demonstrated the longevity and amyloid-ß toxicity attenuating activity of B. utilis ethanolic extract (BUE) in Caenorhabditis elegans. Lifespan of the worms was observed under both the standard laboratory and stress (oxidative and thermal) conditions. Effect of BUE was also observed on the attenuation of age-dependent physiological parameters. Further, gene-specific mutants and green fluorescent protein (GFP)-tagged strains were used to investigate the molecular mechanism underlying the beneficial effects mediated by BUE supplementation. Our results showed that BUE (50 µg/ml) extended the mean lifespan of C. elegans by 35.99% and increased its survival under stress conditions. The BUE also reduced the levels of intracellular reactive oxygen species (ROS) by 22.47%. A delayed amyloid-ß induced paralyses was observed in CL4176 transgenic worms. Interestingly, the BUE supplementation was also able to reduce the α-synuclein aggregation in NL5901 transgenic strain. Gene-specific mutant studies suggested that the BUE-mediated lifespan extension was dependent on daf-16, hsf-1, and skn-1 but not on sir-2.1 gene. Furthermore, transgenic reporter gene expression assay showed that BUE treatment enhanced the expression of stress-protective genes such as sod-3 and gst-4. Present findings suggested that ROS scavenging activity, together with multiple longevity mechanisms, were involved in BUE-mediated lifespan extension. Thus, BUE might have potential to increase the lifespan and to attenuate neuro-related disease progression.

7.
Int J Biol Macromol ; 143: 937-951, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31739073

RESUMO

To avoid disproportionate usage of chemicals in agriculture, an alternative eco-friendly strategy is required to improve soil fertility, and enhance crop productivity. Therefore, the present study demonstrates the role of plant beneficial rhizobacteria viz., Paenibacillus lentimorbus B-30488 (B-30488), Bacillus amyloliquefaciens SN13 (SN13), and their consortium in rice (Oryza sativa L. var. IR-36) facing nutrient deprivation. Parameters such as proline, total soluble sugar, relative water content, electrolytic leakage and malondialdehyde content were modulated in control rice seedlings as compared to treated under nutrient starved conditions. Bacterial inoculation not only significantly improved the agronomic parameters but also concentrations, uptake and partitioning of macro-micro nutrients. To disclose PGPR induced mechanisms to low nutrient stress tolerance, GC-MS analysis was performed. Overall 43 differential metabolites were characterized. Proline, glutamine, linolenic acid, malic acid, ribitol, propanoic acid and serine were accumulated in seedlings exposed to nutrient starvation. In PGPR inoculated rice glucose, fructose, mannose, glucitol, oleic acid, gulonic acid, raffinose, inositol were accumulated that induce metabolic and physiological parameters to reduce the impact of stress. Based on results SN13 was selected for gene expression analysis of metabolism-related genes that further affirmed the ability of PGPR to modulate carbohydrate metabolism in rice seedlings under suboptimum nutrient level.

8.
Saudi J Biol Sci ; 26(7): 1882-1895, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762671

RESUMO

The biodiversity of wheat associated bacteria was deciphered from the peninsular zone of India. A total of 264 isolated bacteria were analyzed through amplified ribosomal DNA restriction analysis (ARDRA, using three restriction enzymes Alu I, Msp I and Hae III, which led to the clustering of these isolates into 12-16 groups for the different sites at >75% similarity index, adding up to 70 groups). 16S rRNA gene based phylogenetic analysis, revealed that all the bacteria belonged to three phyla Proteobacteria, Firmicutes, and Actinobacteria of 32 distinct species of 15 genera namely: Achromobacter, Alcaligenes, Arthrobacter, Bacillus, Delftia, Enterobacter, Exiguobacterium, Klebsiella, Methylobacterium, Micrococcus, Paenibacillus, Pseudomonas, Rhodobacter, Salmonella and Staphylococcus. Representative strains from each cluster were screened in vitro for plant growth promoting traits. Among plant growth promoting activities, siderophore producers were highest (15%), when compared to indole acetic acid producers (13%), Zn-solubilizers (11%), P-solubilizers (11%), ammonia (10%), hydrogen cyanide producers (9%), biocontrol (8%), N2-fixers (7%), 1-aminocyclopropane-1-carboxylate deaminase (6%), GA producers (6%) and K-solubilizers (5%). Among 32 representative strains, Alcaligenes faecalis, Arthrobacter sp., Bacillus siamensis, Bacillus subtilis, Delftia acidovorans, Methylobacterium mesophilicum, Methylobacterium sp., Pseudomonas poae, Pseudomonas putida, and Pseudomonas stutzeri exhibited more than six different plant growth promoting activities at high temperature. Thermotolerant bacterial isolates may have application as inoculants for plant growth promotion and biocontrol agents for crops growing at high temperature conditions.

9.
Sci Rep ; 9(1): 16337, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704976

RESUMO

Over last 15 years high-entropy alloys (HEAs) and complex concentrated alloys (CCAs) have gained much appreciation for their numerous superior properties. In this paper we have shown a novel simulation methodology to realistically predict the nanometer level local structural features of complex Ta0.25Nb0.25Hf0.25Zr0.25 HEA. This involves prediction of the morphology of the short-range clustering (SRCs), their quantitative atomic composition at the nano level and the thermodynamic aspects. An alloy structure model containing 11664 atoms was created and this was subjected to structure evolution at 1800 °C. The structure evolution technique is based on a combined hybrid Monte Carlo and molecular dynamics (MC/MD) approach. The simulated results from this work are further validated against experiments and material characterizations reported in literature and done by high-resolution transmission electron micrograph (HRTEM) for the nano-level microstructure, atom probe tomography (APT) for the local chemical compositions and X-ray diffraction at synchrotron sources for the local lattice relaxation effects. This work qualitatively and quantitatively reproduces the materials characterization results reasonably well from the developed simulation methodologies. The structure evolution methods as described in this work are based on independent computer simulations and does not involve any manual intervention for input based on experiments on evolving SRCs. This work shows the potential of utilizing MC/MD based computational methods to reduce the number of costly experimental characterizations and accelerate the pace for materials development.

10.
Sci Rep ; 9(1): 11912, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417134

RESUMO

The Bacillus amyloliquefaciens-SN13 and model crop rice (Oryza sativa) were chosen to understand the complex regulatory networks that govern plant-PGPR interaction under salt stress. During stress, inoculation with SN13 significantly increased biomass, relative water content, proline and total soluble sugar in rice while decreased lipid peroxidation and electrolyte leakage. Extensive alterations in gene expression were also observed in rice root transcriptome under stress in the presence of SN13. Rhizobacteria induced changes in expression of a considerable number of photosynthesis, hormone, and stress-responsive genes, in addition to cell-wall and lipid metabolism-related genes under salt stress as compared to salt stress or SN13 inoculation alone, indicating its potential role in reducing the harmful effects of salinity. To validate RNA-seq data, qRT-PCR was performed for selected differentially expressed genes representing various functional categories including metabolism, regulation, stress-response, and transporters. Results indicate qualitative and quantitative differences between roots responses to SN13 under stressed and unstressed conditions. Functional expressions of OsNAM and OsGRAM in yeast showed enhanced tolerance to various abiotic stresses, indicating crucial SN13-rice interaction in imparting beneficial effects under stress. This is first detailed report on understanding molecular mechanism underlying beneficial plant-microbe interaction in any economically important model crop plant under abiotic stress.

11.
ACS Omega ; 4(3): 5852-5861, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459735

RESUMO

The metal-support interaction plays an important role in gold catalysis. We employ here crystalline cubic (α-) and hexagonal (ß-) phases of heterometallic fluoride NaYF4 nanoparticles (NPs), obtained by the decomposition of a single source precursor [NaY(TFA)4(diglyme)] (TFA = trifluoroacetate), as nonoxide supports for gold catalysts. Using an isostructural gadolinium analogue, we also obtained doped α-NaYF4:Gd3+ and ß-NaYF4:Gd3+ NPs. A successful deposition of ∼1% by weight gold NPs of average size 5-6.5 nm on these doped and undoped metal fluorides using HAuCl4·3H2O afforded Au/NaYF4 catalysts which were thoroughly characterized by using several physicochemical techniques such as X-ray diffraction, Brunauer-Emmett-Teller analysis, high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. A comparative study of the above catalysts for different oxidation reactions show that while for the aerobic oxidation of trans-stilbene in solution phase, they are either better (in terms of stilbene conversion) or at par (in terms of trans-stilbene oxide yield) in comparison to the reference catalyst Au/TiO2 of the World Gold Council, their activity toward CO oxidation reactions in gas phase remains much less than that of gold catalysts supported on metal oxides.

12.
J Cancer Res Ther ; 15(3): 704-707, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31169246

RESUMO

Anaplastic thyroid carcinoma (ATC) is a rare, highly malignant thyroid tumor with dismal prognosis. Osteoclastic giant cell variant of ATC is extremely rare and is characterized by the presence of a large number of multinucleated giant cells resembling osteoclasts. We report here this unusual variant in a 67-year-old female with a history of long-standing goiter of 13 years duration. Histologically, many multinucleated osteoclast-like giant cells were seen accompanying the malignant spindle cell component. Despite extensive sampling, no evidence of differentiated thyroid malignancy could be elucidated.


Assuntos
Osteoclastos/metabolismo , Osteoclastos/patologia , Carcinoma Anaplásico da Tireoide/diagnóstico , Carcinoma Anaplásico da Tireoide/metabolismo , Idoso , Biomarcadores , Biópsia , Feminino , Humanos , Imuno-Histoquímica , Carcinoma Anaplásico da Tireoide/cirurgia , Tireoidectomia , Resultado do Tratamento , Ultrassonografia
13.
Appl Microbiol Biotechnol ; 103(13): 5447-5458, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31101944

RESUMO

Natural algal bloom consists of promising algal species which could be a feasible option for the source of bulk biomass and biodiesel production. It has been found in five natural fresh water algal blooms (Uttar Pradesh, India), containing high nitrogen (N) (4.6 ± 0.32 mg/L) and phosphorus (P) (4.12 ± 0.29 mg/L) concentration during spring (23.9-25.9 °C) and summer season (32.0-35.0 °C). Among the isolated algae from naturally occurring bloom, Chlorella sorokiniana MKP01 exhibited highest biomass (1.02 ± 0.02 g/L) and lipid content (174.1 ± 9.6 mg/L) in untreated tap water and urea/single super phosphate (SSP) in the ratio (2:1). The biodiesel quality was assessed and found to be with the Indian and international standards. Algal bloom was artificially developed in the open pond containing 10,000 l tap water supplemented with Urea/SSP (2:1) for a consistent supply of bulk biomass, yielded 8 kg of total biomass and lipid 1.3 kg.


Assuntos
Biocombustíveis , Biomassa , Bioprospecção/métodos , Eutrofização/efeitos dos fármacos , Microalgas/metabolismo , Chlorella/metabolismo , Água Doce/análise , Lipídeos/biossíntese , Nitrogênio/metabolismo , Fósforo/metabolismo , Tanques/análise , Ureia/metabolismo
14.
Open Access Maced J Med Sci ; 7(7): 1059-1066, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31049081

RESUMO

AIM: To carry out the comparative nootropic, neuroprotective potentials of two medicinal plant species. MATERIAL AND METHODS: For neuroprotective activity; behavior models (elevated plus maze & morris water maze), in vivo antioxidant (superoxide dismutase, catalase, lipid peroxidation & reduced glutathione), inflammatory markers (IL-1ß, IL-6 & TNF-α) and acetylcholine esterase (AChE) assessment procedures followed at different dosages i.e. 250 & 500 mg/kg of Evolvulus alsinoides and Centella asiatica ethanolic extracts. At the end of the study, it was performed histopathological analysis of the following organs: brain, heart, liver, and kidney. RESULTS: In oral administration of different doses of ethanolic extracts of both medicinal plants i.e. Sco + EEA 250 = 2.49 ± 0.29 , Sco + EEA 500 = 2.67 ± 0.36, Sco + ECA 250 = 2.33 ± 0.17, Sco + ECA 500 = 2.77 ± 0.21, Sco + EEA + ECA 250 = 2.61 ± 0.32 and Sco + EEA + ECA 500 = 2.79 ± 0.16 U/mg of protein respectively against the scopolamine induced group Sco (control) = 5.51 ± 0.35 U/mg of protein extracts shows neuroprotective and nootropic activity with reducing AChE level in the brain homogenate of swiss albino mice. CONCLUSION: Since the E. alsinoides & C. asiatica are already used in traditional Indian medicine as the neuroprotective agent and also found promising effects over inflammatory diseases, wound healing, and immunomodulatory activity. The neuroprotective effect of both plants extracts attributed to inhibition of AChE activity and improve the spatial memory formation.

15.
Open Access Maced J Med Sci ; 7(7): 1071-1076, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31049083

RESUMO

AIM: We aimed to investigate several parameters after the in vivo acute and sub-acute administration of ethanolic extracts from E. alsinoides & C. asiatica. METHODS: Malignant Ovarian Germ Cell Tumors for in vivo toxicity study guidelines 423 and 407 of Organization for Economic Co-operation and Development (OECD) were followed for acute and sub-acute toxicity assays respectively. For LD50 evaluation, a single dose of ethanolic extracts of Evolvulus alsinoides L. (EEA) and ethanolic extracts of Centella asiatica (ECA) was orally administered to mice at doses of 200, 400, 800, 1600 and 2000 mg/kg. Then the animals were observed for 72 hours. For acute toxicity evaluation, a single dose of both extracts was orally administered to mice at doses of 300, 600, 1200 and 2000 mg/kg and the animals were observed for 14 days. In the sub-acute study, the extracts were orally administered to mice for 28 days at doses of 300, 600, 1200 and 2000 mg/kg. To assess the toxicological effects, animals were closely observed on general behaviour, clinical signs of toxicity, body weight, food and water intake. At the end of the study, it was performed biochemical and hematological evaluations, as well as histopathological analysis from the following organs: brain, heart, liver, and kidney. RESULTS: The oral administration of E. alsinoides and C. asiatica ethanolic extracts, i.e. EEA 300, EEA 600, EEA 1200, EEA 2000, ECA 300, ECA 600, ECA 1200 & ECA 2000 mg/kg doses showed no moral toxicity effect in LD50, acute and sub-acute toxicity parameters. CONCLUSION: In this study, we had found that E. alsinoides & C. asiatica extract at different doses cause no mortality in acute and sub-acute toxicity study. Also, histopathology of kidney, liver, heart, and brain showed no alterations in tissues morphology.

16.
J Biomol Struct Dyn ; 37(12): 3226-3244, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30124114

RESUMO

In spite of various research investigations towards anti-depressant drug discovery program, no one drug has not yet launched last 20 years. Corticotropin-releasing factor-1 (CRF-1) is one of the most validated targets for the development of antagonists against depression, anxiety and post-traumatic stress disorders. Various research studies suggest that pyrazinone based CRF-1 receptor antagonists were found to be highly potent and efficacious. In this research investigation, we identified the pharmacophore and binding pattern through 2D and 3D-QSAR and molecular docking respectively. Molecular dynamics studies were also performed to explore the binding pattern recognition. We establish the relationship between activity and pharmacophoric features to design new potent compounds. The best 2D-QSAR model was generated through multiple linear regression method with r2 value of 0.97 and q2 value of 0.89. Also 3D-QSAR model was obtained through k-nearest neighbor molecular field analysis method with q2 value of 0.52 and q2_se value of 0.36. Molecular docking and binding energy were also evaluated to define binding patterns and pharmacophoric groups, including (i) hydrogen bond with residue Asp284, Glu305 and (ii) π-π stacking with residue Trp9. Compound 11i has the highest binding affinity compared to reference compounds, so this compound could be a potent drug for stress related disorders. Most of the compounds, including reference compounds were found within acceptable range of physicochemical parameters. These observations could be provided the leads for the design and optimization of novel CRF-1 receptor antagonists. Communicated by Ramaswamy H. Sarma.

17.
Dalton Trans ; 47(27): 8897-8905, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29942960

RESUMO

The direct synthesis of copper selenide nanoparticles from the reaction of ditertiarybutyl selenide tBu2Se with copper(ii) trifluoroacetate Cu(TFA)2 under mild conditions is reported. The isolation of a molecular species during the course of this reaction, established as [Cu2(TFA)2(tBu2Se)3], by spectroscopic studies and single crystal X-ray structure analysis, confirmed that metal selenide NPs are formed via this intermediate species containing a reduced copper center. Extending this reaction in the presence of commercial TiO2 (P25) offered an easy synthesis of copper selenide-titania nanocomposites with different Cu/Ti ratios. These nanocomposites, well-characterized by powder XRD, STEM, TEM, BET, XPS, EDX and UV-Vis studies, were examined as photocatalysts for the degradation of formic acid (FA). The nCu2-xSe-TiO2 nanocomposites with low mol% of copper selenide, i.e. n = 0.1 and 0.3 mol%, displayed a superior catalytic activity over P25, which is an established benchmark for photocatalysis under UV light.

18.
Indian J Pathol Microbiol ; 61(1): 103-105, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29567895

RESUMO

Mucormycosis is a relatively rare fungal infection seen in immunocompromised patients. Very few cases of invasive cutaneous mucormycosis occurring in neonates have been reported in literature. It is an aggressive disease with a mortality rate of around 64% in neonates, so a high index of suspicion is essential for rapid diagnosis and definitive treatment with broad-spectrum antifungals such as Amphotericin B. We present a case of a premature infant born at 25 weeks of gestation who developed vesicobullous lesions all over the body on day 5 of life. Biopsy from the vesicles confirmed the presence of angioinvasive fungal hyphae of mucormycosis which were highlighted on Periodic acid-Schiff and Grocott stain.


Assuntos
Vesícula/microbiologia , Dermatomicoses/diagnóstico , Infecções Fúngicas Invasivas/diagnóstico , Mucormicose/sangue , Mucormicose/diagnóstico , Anfotericina B/uso terapêutico , Antifúngicos/administração & dosagem , Antifúngicos/uso terapêutico , Biópsia , Vesícula/patologia , Dermatomicoses/sangue , Dermatomicoses/microbiologia , Humanos , Hospedeiro Imunocomprometido , Recém-Nascido , Recém-Nascido Prematuro , Infecções Fúngicas Invasivas/tratamento farmacológico , Infecções Fúngicas Invasivas/microbiologia , Masculino , Mucormicose/microbiologia , Fatores de Risco , Pele/microbiologia , Pele/patologia
19.
J Biomol Struct Dyn ; 36(7): 1691-1712, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28521603

RESUMO

Despite the various research efforts toward the treatment of stress-related disorders, the drug has not yet launched last 20 years. Corticotropin releasing factor-1 receptor antagonists have been point of great interest in stress-related disorders. In the present study, we have selected benzazole scaffold-based compounds as corticotropin releasing factor-1 antagonists and performed 2D and 3D QSAR studies to identify the structural features to elucidating the binding mechanism prediction. The best 2D QSAR model was obtained through multiple linear regression method with r2 value of .7390, q2 value of .5136 and pred_r2 (predicted square correlation coefficient) value of .88. The contribution of 2D descriptor, T_2_C_1 was 60% (negative contribution) and 4pathClusterCount was 40.24% (positive contribution) in enhancing the activity. Also 3D QSAR model was statistically significant with q2 value of .9419 and q2_se (standard error of internal validation) value of .19. Statistical parameters results prove the robustness and significance of both models. Further, molecular docking and pharmacokinetic analysis was performed to explore the scope of investigation. Docking results revealed that the all benzazole compounds show hydrogen bonding with residue Asn283 and having same hydrophobic pocket (Phe286, Leu213, Ile290, Leu287, Phe207, Arg165, Leu323, Tyr327, Phe284, and Met206). Compound B14 has higher activity compare to reference molecules. Most of the compounds were found within acceptable range for pharmacokinetic parameters. This work provides the extremely useful leads for structural substituents essential for benzimidazole moiety to exhibit antagonistic activity against corticotropin releasing factor-1 receptors.


Assuntos
Benzimidazóis/química , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Hormônio Liberador da Corticotropina/química , Sítios de Ligação , Simulação por Computador , Desenho de Drogas , Ligações de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular/métodos , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
20.
Indian J Dermatol ; 62(6): 675, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263552

RESUMO

Primary cutaneous lymphomas are a unique, heterogeneous group of lymphoproliferative disorders which have a primary cutaneous manifestation in the absence of systemic involvement of lymph nodes, bone marrow, or visceral organs at the time of diagnosis. Among the primary cutaneous lymphomas, B-cell lymphoma is much less common and accounts for 20%-25% of cases. Primary cutaneous diffuse large B-cell lymphomas (PCDLBCLs) are aggressive neoplasms with poor prognosis. Early and accurate diagnosis is required as these patients respond well to systemic anthracycline-based chemotherapy (R-CHOP). In this article, we report two cases of PCDLBCL, other which presented with rapidly enlarging skin nodules and were diagnosed based on clinical features, histomorphology, and characteristic immunohistochemical expression. Both the patients were treated with systemic chemotherapy and responded well. During the 6 months' follow-up period, the lesions regressed. The patients are symptom free with no evidence of disease relapse or dissemination to extracutaneous sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA