Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Food Chem ; 335: 127644, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739815

RESUMO

This study provides a robust and reproducible approach for selective extraction of rosmarinic acid (RA) using molecularly imprinted polymers (MIPs). Computational modeling and UV spectroscopic analysis were performed to optimize MIP synthesis. Consequently, six different bulk and surface imprinted polymers were generated using RA as the template. Binding performance of the imprinted polymers was evaluated using static equilibrium and complementary dynamic rebinding experiments. Despite the high selectivity of thus generated surface imprinted polymers, the corresponding bulk polymers exhibited better binding performance when serving as sorbents during solid phase extraction (SPE). An optimized molecularly imprinted solid phase extraction (MISPE) protocol was developed in respect to loaded amount of RA, composition of the loading solution, washing solvent, and elution volume. Thereby, a remarkably selective extraction of RA from real-world Rosmarinus officinalis L. extract with a recovery rate and purity of 81.96 ± 6.33% and 80.59 ± 0.30%, respectively, was achieved.


Assuntos
Cinamatos/isolamento & purificação , Depsídeos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Rosmarinus/química , Extração em Fase Sólida/métodos , Adsorção , Cromatografia Líquida de Alta Pressão , Cinamatos/química , Depsídeos/química , Impressão Molecular , Extratos Vegetais/química , Polímeros/síntese química , Polímeros/química , Extração em Fase Sólida/instrumentação
2.
Pharmaceutics ; 12(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114132

RESUMO

Although we have recently reported the involvement of neonatal Fc receptor (FcRn) in intranasal transport, the transport mechanisms are far from being elucidated. Ex vivo porcine olfactory tissue, primary cells from porcine olfactory epithelium (OEPC) and the human cell line RPMI 2650 were used to evaluate the permeation of porcine and human IgG antibodies through the nasal mucosa. IgGs were used in their wild type and deglycosylated form to investigate the impact of glycosylation. Further, the expression of FcRn and Fc-gamma receptor (FCGR) and their interaction with IgG were analyzed. Comparable permeation rates for human and porcine IgG were observed in OEPC, which display the highest expression of FcRn. Only traces of porcine IgGs could be recovered at the basolateral compartment in ex vivo olfactory tissue, while human IgGs reached far higher levels. Deglycosylated human IgG showed significantly higher permeation in comparison to the wild type in RPMI 2650 and OEPC, but insignificantly elevated in the ex vivo model. An immunoprecipitation with porcine primary cells and tissue identified FCGR2 as a potential interaction partner in the nasal mucosa. Glycosylation sensitive receptors appear to be involved in the uptake, transport, but also degradation of therapeutic IgGs in the airway epithelial layer.

3.
Appl Spectrosc ; : 3702820968062, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33031006

RESUMO

The exposure of mining workers to crystalline particles, e.g., alpha quartz in respirable dust, is a ubiquitous global problem in occupational safety and health at surface and underground operations. The challenge of rapid in-field monitoring for direct assessment and adoption of intervention has not been solved satisfactorily to date, as conventional analytical methods such as X-ray diffraction and infrared spectroscopy require laboratory environments, complex system handling, tedious sample preparation, and are limited by, e.g., addressable particle size. A novel monitoring approach was developed for potential in-field application enabling the quantification of crystalline particles in the respirable regime based on transmission infrared spectroscopy. This on-site approach analyzes samples of dust in ambient air collected onto PVC filters using respirable dust sampling devices. In the present study, we demonstrate that portable Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate data analysis provides a versatile tool for the identification and quantification of minerals in complex real-world matrices. Without further sample preparation, the loaded filters are immediately analyzed via transmission infrared spectroscopy, and the mineral amount is quantified in real-time using a partial least squares regression algorithm. Due to the inherent molecular selectivity for crystalline as well as organic matrix components, infrared spectroscopy uniquely allows to precisely determine the particle composition even in complex samples such as dust from coal mines or clay-rich environments. For establishing a robust partial least squares regression model, a method was developed for generating calibration samples representative in size and composition for respirable mine dust via aerodynamic size separation. Combined with experimental design strategies, this allows tailoring the calibration set to the demands of air quality management in underground mining scenarios, i.e., the respirable particle size regime and the matrix of the target analyte.

4.
ACS Omega ; 5(39): 25036-25041, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33043181

RESUMO

Bare gold nanoparticles were embedded into an iron-polyoxovanadate matrix and used to enhance both the infrared and Raman signatures of a model analyte. A detailed characterization of the matrix-embedded nanoparticles revealed that they retained a plasmon resonance at 564 nm. The enhancement of vibrational signatures of the model analyte crystal violet using bare and embedded gold nanoparticles was compared for both surface enhanced infrared (SEIRA) spectroscopy and surface enhanced Raman spectroscopy (SERS) yielding enhancement factors of 2.2 for SEIRA and 77 for SERS. In contrast, the bare gold nanoparticles revealed significantly lower enhancements (1.6 for SEIRA; 20 for SERS). Hence, it was shown that embedding nanoparticles within an inorganic polyoxometalate-based matrix is an innovative strategy to amplify their signal enhancement properties in vibrational spectroscopies.

5.
J Breath Res ; 14(4): 043001, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32969348

RESUMO

Cavity-enhanced absorption spectroscopies (CEAS) have gained importance in a wide range of applications in molecular spectroscopy. The development of optical sensors based on the CEAS techniques coupled with the continuous wave or pulsed laser sources operating in the mid-infrared or near-infrared spectral regime uniquely offers molecularly selective and ultra-sensitive detection of trace species in complex matrices including exhaled human breath. In this review, we discussed recent applications of CEAS for analyzing trace constituents within the exhaled breath matrix facilitating the non-invasive assessment of human health status. Next to a brief discussion on the mechanisms of formation of trace components found in the exhaled breath matrix related to particular disease states, existing challenges in CEAS and future development towards non-invasive clinical diagnostics will be discussed.


Assuntos
Testes Respiratórios/métodos , Expiração , Óptica e Fotônica/métodos , Animais , Humanos , Óxido Nítrico/análise , Consumo de Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho
6.
Anal Methods ; 12(39): 4724-4733, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32930676

RESUMO

Our recently demonstrated innovative concept of electronic nose (eNose) based on a combination of gas sensors is further tested and benchmarked in the present study. The system is a test bed for gas sensors of different principal technologies distributed within three compartments, which share a compact, very low volume, temperature-controlled sensing chamber. Here, the eNose-based analyser contains three sensing arrays of commercially available semiconducting metal oxide (MOX) gas sensors: one compartment contains 8 analog MOX sensors, while the other two compartments comprise 10 digital MOX sensors. The presented instrument is explicitly tested for the discrimination between mid-range (3-18 ppm) concentrations of different volatile organic compounds (VOCs) including acetaldehyde, acetone, ethanol, ethyl acetate, isoprene and n-pentane under dry and humid conditions, which are all considered relevant gases in future breath diagnostic applications. Since the experiments were performed in periods of time separated by around 20 days, they are affected by drift. For this reason, we explore the opportunity of drift mitigation using methods based on component removal computed by linear discriminant analysis, partial least squares discriminant analysis and direct orthogonalization, which lend themselves to future in-field applications of the developed device and sensing methodology.

7.
Nanomaterials (Basel) ; 10(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731560

RESUMO

The present study describes the fabrication of molecularly imprinted (MI) magnetic beaded fibers using electrospinning. Rosmarinic acid was selected as exemplary yet relevant template during molecular imprinting. A "design of experiments" methodology was used for optimizing the electrospinning process. Four factors, i.e., the concentration of the biodegradable polymer (polycaprolactone), the applied voltage, the flow rate, and the collector distance were varied in a central composite design. The production process was then optimized according to the suitability of the beaded fibers during microrobot fabrication, actuation, and drug release. The optimum average fiber diameter of MI beaded fibers was determined at 857 ± 390 nm with an average number of beads at 0.011 ± 0.002 per µm2. In vitro release profiles of the optimized MI beaded fibers revealed a lower burst rate and a more sustained release when compared to control fibers. Magnetic control of the MI beaded fibers was successfully tested by following selected waypoints along a star-shaped predefined trajectory. This study innovatively combines molecular imprinting technology with magnetic microrobots enabling targeted drug delivery systems that offer precise motion control via the magnetic response of microrobots along with selective uptake of a drug into the microrobot using MI beaded fibers in future.

8.
Anal Bioanal Chem ; 412(19): 4575-4584, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32548766

RESUMO

Metal oxide (MOX) sensors are increasingly gaining attention in analytical applications. Their fundamental operation principle is based on conversion reactions of selected molecular species at their semiconducting surface. However, the exact turnover of analyte gas in relation to the concentration has not been investigated in detail to date. In the present study, two optical sensing techniques-luminescence quenching for molecular oxygen and infrared spectroscopy for carbon dioxide and methane-have been coupled for characterizing the behavior of an example semiconducting MOX methane gas sensor integrated into a recently developed low-volume gas cell. Thereby, oxygen consumption during MOX operation as well as the generation of carbon dioxide from the methane conversion reaction could be quantitatively monitored. The latter was analyzed via a direct mid-infrared gas sensor system based on substrate-integrated hollow waveguide (iHWG) technology combined with a portable Fourier transform infrared spectrometer, which has been able to not only detect the amount of generated carbon dioxide but also the consumption of methane during MOX operation. Hence, a method based entirely on direct optical detection schemes was developed for characterizing the actual signal generating processes-here for the detection of methane-via MOX sensing devices via near real-time online analysis. Graphical Abstract.

9.
Arch Environ Occup Health ; : 1-11, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32552564

RESUMO

Respirable dust can pass beyond ciliated airways of the respiratory tract and influence adverse health effects. Health effects can be studied using samples generated from bulk dust segregation. Because previous segregation methods diverge from size-selection criteria of the international convention for respirable particles (ICRP), a method was developed to approximate the ICRP. The method was compared to an ideal sampler by measuring the sample collection bias. The comparison shows that the uncertainty due to the bias was 0.10 based on European Standard EN13205:2014 criteria, which indicates that the segregator effectively follows the ICRP. Respirable particle size distributions were confirmed by an aerodynamic particle sizer and by computer-controlled scanning electron microscopy. Consequently, a systematic way to generate respirable powders for health effects studies and chemical analyses was developed.

10.
J Biophotonics ; 13(10): e202000110, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32589779

RESUMO

The tensile strength of the intervertebral disc (IVD) is mainly maintained by collagen cross-links. Loss of collagen cross-linking combined with other age-related degenerative processes contributes to tissue weakening, biomechanical failure, disc herniation and pain. Exogenous collagen cross-linking has been identified as an effective therapeutic approach for restoring IVD tensile strength. The current state-of-the-art method to assess the extent of collagen cross-linking in tissues requires destructive procedures and high-performance liquid chromatography. In this study, we investigated the utility of infrared attenuated total reflection (IR-ATR) spectroscopy as a nondestructive analytical strategy to rapidly evaluate the extent of UV-light-activated riboflavin (B2)-induced collagen cross-linking in bovine IVD samples. Thirty-five fresh bovine-tail IVD samples were equally divided into five treatment groups: (a) untreated, (b) cell culture medium Dulbecco's Modified Eagle's Medium only, (c) B2 only, (d) UV-light only and (e) UV-light-B2. A total of 674 measurements have been acquired, and were analyzed via partial least squares discriminant analysis. This classification scheme unambiguously identified individual classes with a sensitivity >91% and specificity >92%. The obtained results demonstrate that IR-ATR spectroscopy reliably differentiates between different treatment categories, and promises an excellent tool for potential in vivo, nondestructive and real-time assessment of exogenous IVD cross-linking.

11.
Toxins (Basel) ; 12(5)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413969

RESUMO

Pyrrolizidine alkaloids (PAs) are distributed in plant families of Asteraceae, Boraginaceae, and Fabaceae and serve in the chemical defense mechanism against herbivores. However, they became a matter of concern due to their toxicity associated with the high risk of intake within herbal preparations, e.g., phytopharmaceutical formulations, medicinal teas, or other plant-derived drug products. In 1992, the German Federal Ministry of Health established the first limits of PA content for fourteen medicinal plants. Because of the toxic effects of PAs, the Federal Institute of Risk Assessment (BfR) established more stringent limits in 2011, whereby a daily intake <0.007 µg/kg body weight was recommended and valid until 2018. A threefold higher limit was then advised by BfR. To address consumer safety, there is the need for more efficient extraction procedures along with robust, selective, and sensitive analytical methods to address these concerns. With the increased prevalence of, e.g., phytopharmaceutical formulations, this timely review comprehensively focuses on the most relevant extraction and analysis strategies for each of those fourteen plant genera. While a variety of extraction procedures has been reported, differences in PA content of up to 1110 ppm (0.11% (w/w)) were obtained dependent on the nature of the solvent and the applied extraction technique. It is evident that the efficient extraction of PAs requires further improvements or at least standardization of the extraction conditions. Comparing the various analytical techniques applied regarding selectivity and sensitivity, LC-MS methods appear most suited. This review shows that both standardized extraction and sensitive determination of PAs is required for achieving appropriate safety levels concerning public health in future.

12.
Molecules ; 25(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397389

RESUMO

Human exhaled breath consists of more than 3000 volatile organic compounds, many of which are relevant biomarkers for various diseases. Although gas chromatography has been the gold standard for volatile organic compound (VOC) detection in exhaled breath, recent developments in mid-infrared (MIR) laser spectroscopy have led to the promise of compact point-of-care (POC) optical instruments enabling even single breath diagnostics. In this review, we discuss the evolution of MIR sensing technologies with a special focus on photoacoustic spectroscopy, and its application in exhaled breath biomarker detection. While mid-infrared point-of-care instrumentation promises high sensitivity and inherent molecular selectivity, the lack of standardization of the various techniques has to be overcome for translating these techniques into more widespread real-time clinical use.

13.
Anal Bioanal Chem ; 412(14): 3447-3456, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32236656

RESUMO

During recent years, mid-infrared (MIR) spectroscopy has matured into a versatile and powerful sensing tool for a wide variety of analytical sensing tasks. Attenuated total reflection (ATR) techniques have gained increased interest due to their potential to perform non-destructive sensing tasks close to real time. In ATR, the essential component is the sampling interface, i.e., the ATR waveguide and its material properties interfacing the sample with the evanescent field ensuring efficient photon-molecule interaction. Gallium arsenide (GaAs) is a versatile alternative material vs. commonly used ATR waveguide materials including but not limited to silicon, zinc selenide, and diamond. GaAs-based internal reflection elements (IREs) are a new generation of semiconductor-based waveguides and are herein used for the first time in direct spectroscopic applications combined with conventional Fourier transform infrared (FT-IR) spectroscopy. Next to the characterization of the ATR waveguide, exemplary surface reactions were monitored, and trace-level analyte detection via signal amplification taking advantage of surface-enhanced infrared absorption (SEIRA) effects was demonstrated. As an example of real-world relevance, the mycotoxin aflatoxin B1 (AFB1) was used as a model analyte in food and feed safety analysis. Graphical abstract.

14.
J Breath Res ; 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32344393

RESUMO

In studies that target specific functions or organs, the response is often overlaid by indirect effects of the intervention on global metabolism. The metabolic side of these interactions can be assessed based on total energy expenditure (TEE) and the contributions of the principal energy sources, carbohydrates, proteins and fat to whole body CO2 production. These parameters can be identified from indirect calorimetry using respiratory oxygen intake and CO2 dioxide production data that are combined with the response of the 13CO2 release in the expired air and the glucose tracer enrichment in plasma following a 13C glucose stable isotope infusion. This concept is applied to a mouse protocol involving anesthesia, mechanical respiration, a disease model, like hemorrhage and therapeutic intervention. It faces challenges caused by a small sample size for both breath and plasma as well as changes in metabolic parameters caused by disease and intervention. Key parameters are derived from multiple measurements, all afflicted with errors that may accumulate leading to unrealistic values. To cope with these challenges, a sensitive on-line breath analysis system based on substrate-integrated hollow waveguide infrared spectroscopy and luminescence (iHWG-IR-LS) was used to monitor gas exchange values. A Bayesian statistical model is developed that uses established equations for indirect calorimetry to predict values for respiratory gas exchange and tracer data that are consistent with the corresponding measurements and also provides statistical error bands for these parameters. With this new methodology, it was possible to estimate important metabolic parameters (respiratory quotient (RQ), relative contribution of carbohydrate, protein and fat oxidation fcarb, ffat and fprot, total energy expenditure TEE) in a resolution never available before for a minimal invasive protocol of mice under anesthesia.

15.
Anal Bioanal Chem ; 412(14): 3499-3508, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32285183

RESUMO

Due to the global need for energy and resources, many workers are involved in underground and surface mining operations where they can be exposed to potentially hazardous crystalline dust particles. Besides commonly known alpha quartz, a variety of other materials may be inhaled when a worker is exposed to airborne dust. To date, the challenge of rapid in-field monitoring, identification, differentiation, and quantification of those particles has not been solved satisfactorily, in part because conventional analytical techniques require laboratory environments, complex method handling, and tedious sample preparation procedures and are in part limited by the effects of particle size. Using a set of the three most abundant minerals in limestone mine dust (i.e., calcite, dolomite, and quartz) and real-world dust samples, we demonstrate that Fourier transform infrared (FTIR) spectroscopy in combination with appropriate multivariate data analysis strategies provides a versatile tool for the identification and quantification of the mineral composition in relative complex matrices. An innovative analytical method with the potential of in-field application for quantifying the relative mass of crystalline particles in mine dust has been developed using transmission and diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) within a unified multivariate model. This proof-of-principle study shows how direct on-site quantification of crystalline particles in ambient air may be accomplished based on a direct-on-filter measurement, after mine dust particles are collected directly onto PVC filters by the worker using body-mounted devices. Without any further sample preparation, these loaded filters may be analyzed via transmission infrared (IR) spectroscopy and/or DRIFTS, and the mineral content is immediately quantified via a partial least squares regression (PLSR) algorithm that enables the combining of the spectral data of both methods into a single robust model. Furthermore, it was also demonstrated that the size regime of dust particles may be classified into groups of hazardous and less hazardous size regimes. Thus, this technique may provide additional essential information for controlling air quality in surface and underground mining operations. Graphical Abstract.

16.
ACS Sens ; 5(4): 1033-1039, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32189494

RESUMO

According to their materials and operating parameters, metal oxide (MOX) sensors respond to target gases only by a change in sensor resistance with a lack in selectivity. By the use of infrared spectroscopy, highly discriminatory information from samples at a molecular level can be obtained and the selectivity can be enhanced. A low-volume gas cell was developed for a commercially available semiconducting MOX methane gas sensor and coupled directly to a mid-infrared gas sensor based on substrate-integrated hollow waveguide (iHWG) technology combined with a Fourier transform infrared spectrometer. This study demonstrates a sensing process with combined orthogonal sensors for fast, time-resolved, and synergic detection of methane and carbon dioxide in gas samples.

17.
ACS Omega ; 5(4): 1927-1937, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039329

RESUMO

The color generating from the biochemical reaction between 3,3',5,5'-tetramethylbenzidine and Lysine@WS2 QDs was used a signal for the detection of hydrogen peroxide. The QDs were prepared using a combination of techniques, that is, probe sonication and hydrothermal treatment. Analysis via UV-vis spectroscopy, Fourier transform infrared and Raman spectroscopy, X-ray diffraction, energy-dispersive spectroscopy, and transmission electron microscopy yielded detailed information on the nature and characteristics of these quantum dots. Furthermore, as-synthesized quantum dots were studied for their capability to mimic peroxidase enzyme using 3,3',5,5'-tetramethylbenzidine as a substrate. Consequently, a colorimetric sensor utilizing Lysine@WS2 QDs could detect hydrogen peroxide in a range of 0.1-60 µM with a response time of 5 min. The same material was used for H2O2 detection using impedance spectroscopy, which yielded a dynamic range of 0.1-350 µM with a response time of 30-40 s.

18.
Anal Chem ; 92(4): 3050-3057, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31904222

RESUMO

Polymer particles with antibody-like affinity, i.e., molecularly imprinted polymers, offer an ideal platform for biopharmaceutical virus purification. In recent years, attempts combining molecular imprinting technology with a variety of visualization and detection techniques have been reported for directly confirming the localized presence of the template. Direct target visualization is crucial for the characterization of molecularly imprinted polymers, especially if biological templates such as viruses are used. In the present study, for the first time the viral binding behavior at virus-imprinted polymers (VIPs) via stimulated emission depletion (STED) microscopy is shown by imaging individual, fluorescently labeled virus particles. STED microscopy achieves among various other super-resolution techniques the best temporal resolution at high spatial resolution. An innovative virus purification material selective for human adenovirus type 5 (AdV5) offered highly purified virus for the subsequent fluorescent labeling procedure, thus enabling STED imaging. Excellent binding affinities (150-fold higher versus control particles) and high selectivity toward the target virus (AdV5) were observed at those VIPs, even in competitive binding experiments with minute virus of mice using dual-label STED microscopy.

19.
Planta Med ; 86(1): 85-90, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31634933

RESUMO

Pyrrolizidine alkaloids and their corresponding pyrrolizidine alkaloid-N-oxides are secondary plant constituents that became the subject of public concern due to their hepatotoxic, pneumotoxic, genotoxic, and cytotoxic effects. In contrast to the well-established analytical separation and detection methods, only a few studies have investigated the extraction of pyrrolizidine alkaloids/pyrrolizidine alkaloid-N-oxides from plant material. In this study, we have applied pressurized liquid extraction with the aim of evaluating the effect of various parameters on the recovery of pyrrolizidine alkaloids. The nature of the modifier (various acids, NH3) added to the aqueous extraction solvent, its concentration (1 or 5%), and the temperature (50 - 125 °C) were systematically varied. To analyse a wide range of structurally different pyrrolizidine alkaloids, Jacobaea vulgaris (syn. Senecio jacobaea), Tussilago farfara, and Symphytum officinale were included. Pyrrolizidine alkaloids were quantified by HPLC-MS/MS and the results obtained by pressurised liquid extraction were compared with the amount of pyrrolizidine alkaloids determined by an official reference method. Using this approach, increased rates of recovery were obtained for J. vulgaris (up to 174.4%), T. farfara (up to 156.5%), and S. officinale (up to 288.7%). Hence, pressurised liquid extraction was found to be a promising strategy for the complete and automated extraction of pyrrolizidine alkaloids, which could advantageously replace other time- and solvent-consuming extraction methods.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Plantas/química , Alcaloides de Pirrolizidina/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Solventes
20.
Anal Chim Acta ; 1095: 48-60, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31864630

RESUMO

The metabolism can be explored via 13C labeling of biological active substances and subsequent quantification of 13C enrichment in the exhaled carbon dioxide in breath. The resulting tracer enrichment values can be determined by Fourier-transform Infrared Spectroscopy (FTIR), since different CO2 isotopologues result in distinct absorption lines in the spectrum.The corresponding determination poses two challenges: first, FTIR absorbance can contain a nonlinear relationship between analyte amount and spectral signal and second, the spectral peaks for the different isotopologues overlap. The overlap precludes a separate calibration to asses the isotopologue concentration values and with it a determination of enrichments from concentration values. We propose here, first, a data reduction step like Principal Component Analysis (PCA) to convert the spectral information into one score pertaining to the 13CO2 enrichment. In a second step, a calibration function between score and enrichment values was established. The enrichment score can be derived by normalizing a subset of the spectrum by some measure for the 12CO2 sample content. Alternatively, the overlapping spectra were decomposed into two isotopologue spectra and the intensity of the separated spectra was used to form an enrichment score. For spectral separation, either Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) was used or a novel decomposition strategy developed for this paper called Rotation and Angle-Bending Bayesian induced Transformation - Multivariate Curve Resolution (RABBIT - MCR) that operates in a Principal Component Analysis (PCA) subspace and is derived from MCR. We compared 13C enrichment estimates from FTIR CO2 spectra using different normalization variants with the two spectral separation models. In conclusion, the two spectral separation variants performed nearly equal, but better than any normalization variant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA