Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Plants (Basel) ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834709


Salinity stress is one of the most damaging abiotic stresses to plants, causing disturbances in physiological, biochemical, and metabolic processes. The exogenous application of natural metabolites is a useful strategy to reduce the adverse effects of stress on crops. We investigated the effect of foliar application of salicylic acid (SA) and ferulic acid (FA) (10-100 µM) on short-term salt-stressed (150 mM NaCl, 72 h) Chinese cabbage plants. Subsequently, proline level, photosynthetic performance, phenolic metabolites with special focus on selected phenolic acids (sinapic acid (SiA), FA, SA), flavonoids (quercetin (QUE), kaempferol (KAE)), and antioxidant activity were investigated in salt-stressed and phenolic acid-treated plants compared with the corresponding controls. Salt stress caused a significant increase in SA and proline contents, a decrease in phenolic compounds, antioxidant activity, and photosynthetic performance, especially due to the impairment of PSI function. SA and FA treatments, with a concentration of 10 µM, had attenuated effects on salt-stressed plants, causing a decrease in proline and SA level, and indicating that the plants suffered less metabolic disturbance. Polyphenolic compounds, especially FA, SiA, KAE, and QUE, were increased in FA and SA treatments in salt-stressed plants. Consequently, antioxidant activities were increased, and photosynthetic performances were improved. FA resulted in a better ameliorative effect on salt stress compared to SA.

Front Plant Sci ; 12: 612702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421934


The Japanese knotweed (Reynoutria japonica Houtt.) is considered as one of the most aggressive and highly successful invasive plants with a negative impact on invaded habitats. Its uncontrolled expansion became a significant threat to the native species throughout Europe. Due to its extensive rhizome system, rapid growth, and allelopathic activity, it usually forms monocultures that negatively affect the nearby vegetation. The efficient regulation of partitioning and utilization of energy in photosynthesis enables invasive plants to adapt rapidly a variety of environmental conditions. Therefore, we aimed to determine the influence of light conditions on photosynthetic reactions in the Japanese knotweed. Plants were grown under two different light regimes, namely, constant low light (CLL, 40 µmol/m2/s) and fluctuating light (FL, 0-1,250 µmol/m2/s). To evaluate the photosynthetic performance, the direct and modulated chlorophyll a fluorescence was measured. Plants grown at a CLL served as control. The photosynthetic measurements revealed better photosystem II (PSII) stability and functional oxygen-evolving center of plants grown in FL. They also exhibited more efficient conversion of excitation energy to electron transport and an efficient electron transport beyond the primary electron acceptor QA, all the way to PSI. The enhanced photochemical activity of PSI suggested the formation of a successful adaptive mechanism by regulating the distribution of excitation energy between PSII and PSI to minimize photooxidative damage. A faster oxidation at the PSI side most probably resulted in the generation of the cyclic electron flow around PSI. Besides, the short-term exposure of FL-grown knotweeds to high light intensity increased the yield induced by downregulatory processes, suggesting that the generation of the cyclic electron flow protected PSI from photoinhibition.

Front Plant Sci ; 10: 450, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031786


Soil salinity is severely affecting crop productivity in many countries, particularly in the Mediterranean area. To evaluate early plant responses to increased salinity and characterize tolerance markers, three important Brassica crops - Chinese cabbage (Brassica rapa ssp. pekinensis), white cabbage (B. oleracea var. capitata) and kale (B. oleracea var. acephala) were subjected to short-term (24 h) salt stress by exposing them to NaCl at concentrations of 50, 100, or 200 mM. Physiological (root growth, photosynthetic performance parameters, and Na+/K+ ratio) and biochemical parameters (proline content and lipid peroxidation as indicated by malondialdehyde, MDA, levels) in the plants' roots and leaves were then measured. Photosynthetic parameters such as the total performance index PItotal (describing the overall efficiency of PSI, PSII and the intersystem electron transport chain) appeared to be the most salinity-sensitive parameter and informative stress marker. This parameter was decreased more strongly in Chinese cabbage than in white cabbage and kale. It indicated that salinity reduced the capacity of the photosynthetic system for efficient energy conversion, particularly in Chinese cabbage. In parallel with the photosynthetic impairments, the Na+/K+ ratio was highest in Chinese cabbage leaves and lowest in kale leaves while kale root is able to keep high Na+/K+ ratio without a significant increase in MDA. Thus Na+/K+ ratio, high in root and low in leaves accompanying with low MDA level is an informative marker of salinity tolerance. The crops' tolerance was positively correlated with levels of the stress hormone abscisic acid (ABA) and negatively correlated with levels of jasmonic acid (JA), and jasmonoyl-L-isoleucine (JA-Ile). Furthermore, salinity induced contrasting changes in levels of the growth-promoting hormones brassinosteroids (BRs). The crop's tolerance was positively correlated with levels of BR precursor typhasterol while negatively with the active BR brassinolide. Principal Component Analysis revealed correlations in observed changes in phytohormones, biochemical, and physiological parameters. Overall, the results show that kale is the most tolerant of the three species and Chinese cabbage the most sensitive to salt stress, and provide holistic indications of the spectrum of tolerance mechanisms involved.

Antioxidants (Basel) ; 7(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241411


Although Aloe vera contains numerous bioactive components, the activity principles of widely used A. vera extracts are uncertain. Therefore, we analyzed the effects of genuine A. vera aqueous extract (AV) on human cells with respect to the effects of hydrogen peroxide (H2O2) and 4-hydroxynonenal (HNE). Fully developed A. vera leaves were harvested and analyzed for vitamin C, carotenoids, total soluble phenolic content, and antioxidant capacity. Furthermore, human cervical cancer (HeLa), human microvascular endothelial cells (HMEC), human keratinocytes (HaCat), and human osteosarcoma (HOS) cell cultures were treated with AV extract for one hour after treatment with H2O2 or HNE. The cell number and viability were determined using Trypan Blue, and endogenous reactive oxygen species (ROS) production was determined by fluorescence, while intracellular HNE⁻protein adducts were measured for the first time ever by genuine cell-based HNE⁻His ELISA. The AV extract expressed strong antioxidant capacities (1.1 mmol of Trolox eq/g fresh weight) and cell-type-specific influence on the cytotoxicity of H2O2, as well as on endogenous production of ROS and HNE⁻protein adducts induced by HNE treatment, while AV itself did not induce production of ROS or HNE⁻protein adducts at all. This study, for the first time, revealed the importance of HNE for the activity principles of AV. Since HMEC cells were the most sensitive to AV, the effects of AV on microvascular endothelia could be of particular importance for the activity principles of Aloe vera extracts.

J Plant Physiol ; 209: 1-10, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27987432


Molecular processes involved in photosystem II adaptation of woody species to diurnal changes in light and temperature conditions are still not well understood. Regarding this, here we investigated differences between young and mature leaves of common fig (Ficus carica L.) in photosynthetic performance as well as accumulation of the main photosynthetic proteins: light harvesting complex II, D1 protein and Rubisco large subunit. Investigated leaf types revealed different adjustment mechanisms to keep effective photosynthesis. Rather stable diurnal accumulation of light harvesting complex II in mature leaves enabled efficient excitation energy utilization (negative L-band) what triggered faster D1 protein degradation at high light. However, after photoinhibition, greater accumulation of D1 during the night enabled them faster recovery. So, the most photosynthetic parameters, as the maximum quantum yield for primary photochemistry, electron transport and overall photosynthetic efficiency in mature leaves successfully restored to their initial values at 1a.m. Reduced connectivity of light harvesting complexes II to its reaction centers (positive L-band) in young leaves increased dissipation of excess light causing less pressure to D1 and its slower degradation. Decreased electron transport in young leaves, due to reduced transfer beyond primary acceptor QA- most probably additionally induced degradation of Rubisco large subunit what consequently led to the stronger decrease of overall photosynthetic efficiency in young leaves at noon.

Ritmo Circadiano , Ficus/fisiologia , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Clorofila A , Fluorescência , Cinética , Fótons
Aquat Toxicol ; 175: 117-26, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27015565


The effect of two concentrations of cobalt (Co(2+)) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72h after the start of the exposure. Higher concentration of cobalt (1mM) induced growth inhibition while lower concentration (0.01mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co(2+) especially at the higher concentration where decreased electron transport beyond primary quinone acceptor QA(-) and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co(2+) concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals.

Araceae/efeitos dos fármacos , Cobalto/toxicidade , Transporte de Elétrons/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Membrana Celular/efeitos dos fármacos , Clorofila/metabolismo , Clorofila A , Ativação Enzimática/efeitos dos fármacos , Fluorescência , Crescimento/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade