Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32511903

RESUMO

Two-dimensional urea- and thiourea-containing covalent organic frameworks (COFs) were synthesized at ambient conditions at large scale within 1 h in the absence of an acid catalyst. The site-isolated urea and thiourea in the COF showed enhanced catalytic efficiency as a hydrogen-bond-donating organocatalyst compared to the molecular counterparts in epoxide ring-opening reaction, aldehyde acetalization, and Friedel-Crafts reaction. The COF catalysts also had excellent recyclability.

2.
J Am Chem Soc ; 141(9): 3893-3900, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30707577

RESUMO

Nanoparticle encapsulation inside zirconium-based metal-organic frameworks (NP@MOF) is hard to control, and the resulting materials often have nonuniform morphologies with NPs on the external surface of MOFs and NP aggregates inside the MOFs. In this work, we report the controlled encapsulation of gold nanorods (AuNRs) by a scu-topology Zr-MOF, via a room-temperature MOF assembly. This is achieved by functionalizing the AuNRs with poly(ethylene glycol) surface ligands, allowing them to retain colloidal stability in the precursor solution and to seed the MOF growth. Using this approach, we achieve core-shell yields exceeding 99%, tuning the MOF particle size via the solution concentration of AuNRs. The functionality of AuNR@MOFs is demonstrated by using the AuNRs as embedded probes for selective surface-enhanced Raman spectroscopy (SERS). The AuNR@MOFs are able to both take-up or block molecules from the pores, thereby facilitating highly selective sensing at the AuNR ends. This proof-of-principle study serves to present both the outstanding level of control in the synthesis and the high potential for AuNR@Zr-MOF composites for SERS.

3.
Chemistry ; 24(50): 13170-13180, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30028544

RESUMO

The metal-organic frameworks (MOFs) M(BPZNO2 ) (M=Co, Cu, Zn; H2 BPZNO2 =3-nitro-4,4'-bipyrazole) were prepared through solvothermal routes and were fully investigated in the solid state. They showed good thermal stability both under a N2 atmosphere and in air, with decomposition temperatures peaking up to 663 K for Zn(BPZNO2 ). Their crystal structure is characterized by 3D networks with square (M=Co, Zn) or rhombic (M=Cu) channels decorated by polar NO2 groups. As revealed by N2 adsorption at 77 K, they are micro-mesoporous materials with BET specific surface areas ranging from 400 to 900 m2 g-1 . Remarkably, under the mild conditions of 298 K and 1.2 bar, Zn(BPZNO2 ) adsorbs 21.8 wt % CO2 (4.95 mmol g-1 ). It shows a Henry CO2 /N2 selectivity of 15 and an ideal adsorbed solution theory (IAST) selectivity of 12 at p=1 bar. As a CO2 adsorbent, this compound is the best-performing MOF to date among those bearing a nitro group as a unique chemical tag. High-resolution powder X-ray diffraction at 298 K and different CO2 loadings revealed, for the first time in a NO2 -functionalized MOF, the insurgence of primary host-guest interactions involving the C(3)-NO2 moiety of the framework and the oxygen atoms of carbon dioxide, as confirmed by Grand Canonical Monte Carlo simulations. This interaction mode is markedly different from that observed in NH2 -functionalized MOFs, for which the carbon atom of CO2 is involved.

4.
Nat Commun ; 9(1): 1378, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643387

RESUMO

Current advances in materials science have resulted in the rapid emergence of thousands of functional adsorbent materials in recent years. This clearly creates multiple opportunities for their potential application, but it also creates the following challenge: how does one identify the most promising structures, among the thousands of possibilities, for a particular application? Here, we present a case of computer-aided material discovery, in which we complete the full cycle from computational screening of metal-organic framework materials for oxygen storage, to identification, synthesis and measurement of oxygen adsorption in the top-ranked structure. We introduce an interactive visualization concept to analyze over 1000 unique structure-property plots in five dimensions and delimit the relationships between structural properties and oxygen adsorption performance at different pressures for 2932 already-synthesized structures. We also report a world-record holding material for oxygen storage, UMCM-152, which delivers 22.5% more oxygen than the best known material to date, to the best of our knowledge.

5.
Nat Mater ; 17(2): 174-179, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251723

RESUMO

A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal-organic framework (MOF), which after successful packing and densification reaches 259 cm3 (STP) cm-3 capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value. Nanoindentation tests on the monolithic MOF showed robust mechanical properties, with hardness at least 130% greater than that previously measured in its conventional MOF counterparts. Our findings represent a substantial step in the application of mechanically robust conformed and densified MOFs for high volumetric energy storage and other industrial applications.

6.
Chem Commun (Camb) ; 53(83): 11437-11440, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28976523

RESUMO

In this work, we show a solvent-free "explosive" synthesis (SFES) method for the ultrafast and low-cost synthesis of metal-formate frameworks (MFFs). A combination of experiments and in-depth molecular modelling analysis - using grand canonical Monte Carlo (GCMC) simulations - of the adsorption performance of the synthesized nickel-formate framework (Ni-FA) revealed extremely high quality products with permanent porosity, prominent CH4/N2 selectivity (ca. 6.0), and good CH4 adsorption capacity (ca. 0.80 mmol g-1 or 33.97 cm3 cm-3) at 1 bar and 298 K. This performance is superior to those of many other state-of-the-art porous materials.

7.
Chem Sci ; 8(5): 3989-4000, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28553541

RESUMO

FMOF-1 is a flexible, superhydrophobic metal-organic framework with a network of channels and side pockets decorated with -CF3 groups. CO2 adsorption isotherms measured between 278 and 313 K and up to 55 bar reveal a maximum uptake of ca. 6.16 mol kg-1 (11.0 mol L-1) and unusual isotherm shapes at the higher temperatures, suggesting framework expansion. We used neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N2, O2, and CO2. Neutron diffraction in situ experiments on the crystalline powder show that CO2 molecules are favourably adsorbed at three distinct adsorption sites in the large channels of FMOF-1 and cannot access the small pockets in FMOF-1 at 290 K and oversaturated pressure at 61 bar. Stepped adsorption isotherms for N2 and O2 at 77 K can be explained by combining Monte Carlo simulations in several different crystal structures of FMOF-1 obtained from neutron and X-ray diffraction under different conditions. A similar analysis is successful for CO2 adsorption at 278 and 283 K up to ca. 30 bar; however, at 298 K and pressures above 30 bar, the results suggest even more substantial expansion of the FMOF-1 framework. The measured contact angle for water on an FMOF-1 pellet is 158°, demonstrating superhydrophobicity. Simulations and adsorption measurements also show that FMOF-1 is hydrophobic and water is not adsorbed in FMOF-1 at room temperature. Simulated mixture isotherms of CO2 in the presence of 80% relative humidity predict that water does not influence the CO2 adsorption in FMOF-1, suggesting that hydrophobic MOFs could hold promise for CO2 capture from humid gas streams.

8.
J Am Chem Soc ; 139(22): 7522-7532, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28508624

RESUMO

Utilizing metal-organic frameworks (MOFs) as a biological carrier can lower the amount of the active pharmaceutical ingredient (API) required in cancer treatments to provide a more efficacious therapy. In this work, we have developed a temperature treatment process for delaying the release of a model drug compound from the pores of NU-1000 and NU-901, while taking care to utilize these MOFs' large pore volume and size to achieve exceptional model drug loading percentages over 35 wt %. Video-rate super-resolution microscopy reveals movement of MOF particles when located outside of the cell boundary, and their subsequent immobilization when taken up by the cell. Through the use of optical sectioning structured illumination microscopy (SIM), we have captured high-resolution 3D images showing MOF uptake by HeLa cells over a 24 h period. We found that addition of a model drug compound into the MOF and the subsequent temperature treatment process does not affect the rate of MOF uptake by the cell. Endocytosis analysis revealed that MOFs are internalized by active transport and that inhibiting the caveolae-mediated pathway significantly reduced cellular uptake of MOFs. Encapsulation of an anticancer therapeutic, alpha-cyano-4-hydroxycinnamic acid (α-CHC), and subsequent temperature treatment produced loadings of up to 81 wt % and demonstrated efficacy at killing cells beyond the burst release effect.


Assuntos
Sistemas de Liberação de Medicamentos , Estruturas Metalorgânicas/química , Zircônio/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Liberação Controlada de Fármacos , Células HeLa , Humanos , Microscopia Eletrônica de Varredura , Porosidade , Temperatura
9.
J Am Chem Soc ; 139(15): 5397-5404, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28343394

RESUMO

We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (Hf12O8(OH)14), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal-organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal-organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.

10.
J Am Chem Soc ; 138(43): 14242-14245, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27797189

RESUMO

We describe the incorporation of a bistable mechanically interlocked molecule (MIM) into a robust Zr-based metal-organic framework (MOF), NU-1000, by employing a post-synthetic functionalization protocol. On average, close to two bistable [2]catenanes can be incorporated per repeating unit of the hexagonal channels of NU-1000. The reversible redox-switching of the bistable [2]catenanes is retained inside the MOF, as evidenced by solid-state UV-vis-NIR reflectance spectroscopy and cyclic voltammetry. This research demonstrates that bistable MIMs are capable of exhibiting robust dynamics inside the nanopores of a MOF.

11.
Interface Focus ; 6(4): 20160027, 2016 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-27499847

RESUMO

Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses.

12.
J Am Chem Soc ; 138(7): 2292-301, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26812983

RESUMO

Porous metal-organic frameworks (MOFs) have been studied in the context of a wide variety of applications, particularly in relation to molecular storage and separation sciences. Recently, we reported a green, renewable framework material composed of γ-cyclodextrin (γ-CD) and alkali metal salts--namely, CD-MOF. This porous material has been shown to facilitate the separation of mixtures of alkylaromatic compounds, including the BTEX mixture (benzene, toluene, ethylbenzene, and the regioisomers of xylene), into their pure components, in both the liquid and gas phases, in an energy-efficient manner which could have implications for the petrochemical industry. Here, we report the ability of CD-MOF to separate a wide variety of mixtures, including ethylbenzene from styrene, haloaromatics, terpinenes, pinenes and other chiral compounds. CD-MOF retains saturated compounds to a greater extent than their unsaturated analogues. Also, the location of a double bond within a molecule influences its retention within the extended framework, as revealed in the case of the structural isomers of pinene and terpinine, where the isomers with exocyclic double bonds are more highly retained than those with endocyclic double bonds. The ability of CD-MOF to separate various mono- and disubstituted haloaromatic compounds appears to be controlled by both the size of the halogen substituents and the strength of the noncovalent bonding interactions between the analyte and the framework, an observation which has been confirmed by molecular simulations. Since CD-MOF is a homochiral framework, it is also able to resolve the enantiomers of chiral analytes, including those of limonene and 1-phenylethanol. These findings could lead to cheaper and easier-to-prepare stationary phases for HPLC separations when compared with other chiral stationary phases, such as CD-bonded silica particles.

13.
J Am Chem Soc ; 138(1): 215-24, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26651496

RESUMO

Metal-organic frameworks (MOFs) can exhibit exceptionally high surface areas, which are experimentally estimated by applying the BET theory to measured nitrogen isotherms. The Brunauer, Emmett, and Teller (BET)-estimated nitrogen monolayer loading is thus converted to a "BET area," but the meaning of MOF BET areas remains under debate. Recent emphasis has been placed on the usage of four so-called "BET consistency criteria." Using these criteria and simulated nitrogen isotherms for perfect crystals, we calculated BET areas for graphene and 25 MOFs having different pore-size distributions. BET areas were compared with their corresponding geometrically calculated, nitrogen-accessible surface areas (NASAs). Analysis of simulation snapshots elucidated the contributions of "pore-filling" and "monolayer-formation" to the nitrogen adsorption loadings in different MOF pores, revealing the origin of inaccuracies in BET-calculated monolayer loadings, which largely explain discrepancies between BET areas and NASAs. We also find that even if all consistency criteria are satisfied, the BET calculation can significantly overestimate the true monolayer loading, especially in MOFs combining mesopores (d ≥ 20 Å) and large micropores (d = 10-20 Å), due to the overlap of pore-filling and monolayer-formation regimes of these two kinds of pores. While it is not always possible to satisfy all consistency criteria, it is critical to minimize the deviation from these criteria during BET range selection to consistently compare BET areas of different MOFs and for comparing simulated and experimental BET areas of a given MOF. To accurately assess the quality of a MOF sample, it is best to compare experimental BET areas with simulated BET areas rather than with calculated NASAs.

14.
Dalton Trans ; 45(10): 4150-3, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26420362

RESUMO

Cu-MOF-74 (also known as Cu-CPO-27) was identified as a sorbent having one of the highest densities of Cu(ii) sites per unit volume. Given that Cu(ii) in the framework can be thermally activated to yield a five-coordinate Cu(ii) species, we identified this MOF as a potential candidate for maximal volumetric uptake of ammonia. To that end, the kinetic breakthrough of ammonia in Cu-MOF-74/Cu-CPO-27 was examined under both dry and humid conditions. Under dry conditions the MOF exhibited a respectable performance (2.6 vs. 2.9 NH3 per nm(3) for the current record holder HKUST-1), and under 80% relative humidity, the MOF outperformed HKUST-1 (5.9 vs. 3.9 NH3 per nm(3), respectively).

15.
Proc Natl Acad Sci U S A ; 112(36): 11161-8, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26283386

RESUMO

The organization of trisradical rotaxanes within the channels of a Zr6-based metal-organic framework (NU-1000) has been achieved postsynthetically by solvent-assisted ligand incorporation. Robust Zr(IV)-carboxylate bonds are forged between the Zr clusters of NU-1000 and carboxylic acid groups of rotaxane precursors (semirotaxanes) as part of this building block replacement strategy. Ultraviolet-visible-near-infrared (UV-Vis-NIR), electron paramagnetic resonance (EPR), and 1H nuclear magnetic resonance (NMR) spectroscopies all confirm the capture of redox-active rotaxanes within the mesoscale hexagonal channels of NU-1000. Cyclic voltammetry measurements performed on electroactive thin films of the resulting material indicate that redox-active viologen subunits located on the rotaxane components can be accessed electrochemically in the solid state. In contradistinction to previous methods, this strategy for the incorporation of mechanically interlocked molecules within porous materials circumvents the need for de novo synthesis of a metal-organic framework, making it a particularly convenient approach for the design and creation of solid-state molecular switches and machines. The results presented here provide proof-of-concept for the application of postsynthetic transformations in the integration of dynamic molecular machines with robust porous frameworks.

16.
J Am Chem Soc ; 137(17): 5706-19, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25806952

RESUMO

Metal-organic frameworks (MOFs) are known to facilitate energy-efficient separations of important industrial chemical feedstocks. Here, we report how a class of green MOFs-namely CD-MOFs-exhibits high shape selectivity toward aromatic hydrocarbons. CD-MOFs, which consist of an extended porous network of γ-cyclodextrins (γ-CDs) and alkali metal cations, can separate a wide range of benzenoid compounds as a result of their relative orientation and packing within the transverse channels formed from linking (γ-CD)6 body-centered cuboids in three dimensions. Adsorption isotherms and liquid-phase chromatographic measurements indicate a retention order of ortho- > meta- > para-xylene. The persistence of this regioselectivity is also observed during the liquid-phase chromatography of the ethyltoluene and cymene regioisomers. In addition, molecular shape-sorting within CD-MOFs facilitates the separation of the industrially relevant BTEX (benzene, toluene, ethylbenzene, and xylene isomers) mixture. The high resolution and large separation factors exhibited by CD-MOFs for benzene and these alkylaromatics provide an efficient, reliable, and green alternative to current isolation protocols. Furthermore, the isolation of the regioisomers of (i) ethyltoluene and (ii) cymene, together with the purification of (iii) cumene from its major impurities (benzene, n-propylbenzene, and diisopropylbenzene) highlight the specificity of the shape selectivity exhibited by CD-MOFs. Grand canonical Monte Carlo simulations and single component static vapor adsorption isotherms and kinetics reveal the origin of the shape selectivity and provide insight into the capability of CD-MOFs to serve as versatile separation platforms derived from renewable sources.

17.
J Am Chem Soc ; 137(10): 3585-91, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25723400

RESUMO

An isoreticular series of metal-organic frameworks (MOFs) with the ftw topology based on zirconium oxoclusters and tetracarboxylate linkers with a planar core (NU-1101 through NU-1104) has been synthesized employing a linker expansion approach. In this series, NU-1103 has a pore volume of 2.91 cc g(-1) and a geometrically calculated surface area of 5646 m(2) g(-1), which is the highest value reported to date for a zirconium-based MOF and among the largest that have been reported for any porous material. Successful activation of the MOFs was proven based on the agreement of pore volumes and BET areas obtained from simulated and experimental isotherms. Critical for practical applications, NU-1103 combines for the first time ultrahigh surface area and water stability, where this material retained complete structural integrity after soaking in water. Pressure range selection for the BET calculations on these materials was guided by the four so-called "consistency criteria". The experimental BET area of NU-1103 was 6550 m(2) g(-1). Insights obtained from molecular simulation suggest that, as a consequence of pore-filling contamination, the BET method overestimates the monolayer loading of NU-1103 by ∼16%.

18.
Inorg Chem ; 54(4): 1785-90, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25634540

RESUMO

Intentional incorporation of defect sites functionalized with free carboxylic acid groups was achieved in a paddlewheel-based metal-organic framework (MOF) of rht topology, NU-125. Solvent-assisted linker exchange (SALE) performed on a mixed-linker derivative of NU-125 containing isophthalate (IPA) linkers (NU-125-IPA) led to the selective replacement of the IPA linkers in the framework with a conjugate base of trimesic acid (H3BTC). Only two of the three carboxylic acid moieties offered by H3BTC coordinate to the Cu2 centers in the MOF, yielding a rare example of a MOF decorated with free -COOH groups. The presence of the -COOH groups was confirmed by diffuse reflectance infrared Fourier-transformed spectroscopy (DRIFTS); moreover, these groups were found to be available for postsynthesis elaboration (selective monoester formation). This work constitutes an example of the use of SALE to obtain otherwise challenging-to-synthesize MOFs. The resulting MOF, in turn, can serve as a platform for accomplishing selective organic transformations, in this case, exclusive monoesterification of trimesic acid.

19.
Chem Commun (Camb) ; 48(40): 4824-6, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22499360

RESUMO

An upper rim-functionalised calix[4]arene dicarboxylic acid (H(2)caldc) has been used to prepare four metal-organic frameworks, three of which have been structurally characterised and shown to form two- or three-dimensional network structures. Simulations suggest that such networks are likely to display interesting selectivity to guest molecules.

20.
J Am Chem Soc ; 133(46): 18526-9, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22022950

RESUMO

Para-disubstituted alkylaromatics such as p-xylene are preferentially adsorbed from an isomer mixture on three isostructural metal-organic frameworks: MIL-125(Ti) ([Ti(8)O(8)(OH)(4)(BDC)(6)]), MIL-125(Ti)-NH(2) ([Ti(8)O(8)(OH)(4)(BDC-NH(2))(6)]), and CAU-1(Al)-NH(2) ([Al(8)(OH)(4)(OCH(3))(8)(BDC-NH(2))(6)]) (BDC = 1,4-benzenedicarboxylate). Their unique structure contains octahedral cages, which can separate molecules on the basis of differences in packing and interaction with the pore walls, as well as smaller tetrahedral cages, which are capable of separating molecules by molecular sieving. These experimental data are in line with predictions by molecular simulations. Additional adsorption and microcalorimetric experiments provide insight in the complementary role of the two cage types in providing the para selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA