Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Breed Sci ; 63(5): 450-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24757384


Adaptation of wheat (Triticum aestivum L.) to high temperatures could be improved by introducing alien genes from wild relatives. We evaluated the responses of wheat-Leymus racemosus chromosome introgression lines to high temperature to determine their potentiality for developing improved wheat cultivars. Introgression lines and their parent Chinese Spring were evaluated in a growth chamber at the seedling stage and in the field at the reproductive stage in two heat-stressed environments in Sudan. Optimum and late planting were used to ensure exposure of the plants to heat stress at the reproductive stage. The results revealed the impact of several Leymus chromosomes in improving wheat adaptation and tolerance to heat. Three lines possessed enhanced adaptation, whereas two showed high heat tolerance. Two addition lines showed a large number of kernels per spike, while one possessed high yield potential. Grain yield was correlated negatively with the heat susceptibility index, days to heading and maturity and positively with kernel number per spike and triphenyl tetrazolium chloride assay under late planting. The findings suggest that these genetic stocks could be used as a bridge to introduce the valuable Leymus traits into a superior wheat genetic background, thus helping maximize wheat yield in heat-stressed environments.

Breed Sci ; 63(4): 407-16, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24399913


Aluminum (Al) toxicity is the key factor limiting wheat production in acid soils. Soil liming has been used widely to increase the soil pH, but due to its high cost, breeding tolerant cultivars is more cost-effective mean to mitigate the problem. Tolerant cultivars could be developed by traditional breeding, genetic transformation or introgression of genes from wild relatives. We used 30 wheat alien chromosome addition lines to identify new genetic resources to improve wheat tolerance to Al and to identify the chromosomes harboring the tolerance genes. We evaluated these lines and their wheat background Chinese Spring for Al tolerance in hydroponic culture at various Al concentrations. We also investigated Al uptake, oxidative stress and cell membrane integrity. The L. racemosus chromosomes A and E significantly enhanced the Al tolerance of the wheat in term of relative root growth. At the highest Al concentration tested (200 µM), line E had the greatest tolerance. The introgressed chromosomes did not affect Al uptake of the tolerant lines. We attribute the improved tolerance conferred by chromosome E to improved cell membrane integrity. Chromosome engineering with these two lines could produce Al-tolerant wheat cultivars.