Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 3342, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463823

RESUMO

We report on optimisation of the environmental stability and high temperature operation of surface transfer doping in hydrogen-terminated diamond using MoO3 and V2O5 surface acceptor layers. In-situ annealing of the hydrogenated diamond surface at 400 °C was found to be crucial to enhance long-term doping stability. High temperature sheet resistance measurements up to 300 °C were performed to examine doping thermal stability. Exposure of MoO3 and V2O5 transfer-doped hydrogen-terminated diamond samples up to a temperature of 300 °C in ambient air showed significant and irreversible loss in surface conductivity. Thermal stability was found to improve dramatically however when similar thermal treatment was performed in vacuum or in ambient air when the oxide layers were encapsulated with a protective layer of hydrogen silsesquioxane (HSQ). Inspection of the films by X-ray diffraction revealed greater crystallisation of the MoO3 layers following thermal treatment in ambient air compared to the V2O5 films which appeared to remain amorphous. These results suggest that proper encapsulation and passivation of these oxide materials as surface acceptor layers on hydrogen-terminated diamond is essential to maximise their environmental and thermal stability.

2.
Microelectron Eng ; 112(100): 67-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24748699

RESUMO

In this work the direct transfer of nanopatterns into titanium is demonstrated. The nanofeatures are imprinted at room temperature using diamond stamps in a single step. We also show that the imprint properties of the titanium surface can be altered by anodisation yielding a significant reduction in the required imprint force for pattern transfer. The anodisation process is also utilised for curved titanium surfaces where a reduced imprint force is preferable to avoid sample deformation and damage. We finally demonstrate that our process can be applied directly to titanium rods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA