Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Beilstein J Nanotechnol ; 12: 913-923, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497739


Employment of the non-trivial proximity effect in superconductor/ferromagnet (S/F) heterostructures for the creation of novel superconducting devices requires accurate control of magnetic states in complex thin-film multilayers. In this work, we study experimentally in-plane transport properties of microstructured Nb/Co multilayers. We apply various transport characterization techniques, including magnetoresistance, Hall effect, and the first-order-reversal-curves (FORC) analysis. We demonstrate how FORC can be used for detailed in situ characterization of magnetic states. It reveals that upon reduction of the external field, the magnetization in ferromagnetic layers first rotates in a coherent scissor-like manner, then switches abruptly into the antiparallel state and after that splits into the polydomain state, which gradually turns into the opposite parallel state. The polydomain state is manifested by a profound enhancement of resistance caused by a flux-flow phenomenon, triggered by domain stray fields. The scissor state represents the noncollinear magnetic state in which the unconventional odd-frequency spin-triplet order parameter should appear. The non-hysteretic nature of this state allows for reversible tuning of the magnetic orientation. Thus, we identify the range of parameters and the procedure for in situ control of devices based on S/F heterostructures.

Beilstein J Nanotechnol ; 11: 1776-1788, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33299737


This work is a study of the formation processes and the effect of related process parameters of multilayer nanosystems and devices for spintronics. The model system is a superconducting spin valve, which is a multilayer structure consisting of ferromagnetic cobalt nanolayers separated by niobium superconductor nanolayers. The aim was to study the influence of the main technological parameters including temperature, concentration and spatial distribution of deposited atoms over the nanosystem surface on the atomic structure and morphology of the nanosystem. The studies were carried out using the molecular dynamics method using the many-particle potential of the modified embedded-atom method. In the calculation process the temperature was controlled using the Nose-Hoover thermostat. The simulation of the atomic nanolayer formation was performed by alternating the directional deposition of different composition layers under high vacuum and stationary temperature conditions. The structure and thickness of the formed nanolayers and the distribution of elements at their interfaces were studied. The alternating layers of the formed nanosystem and their interfaces are shown to have significantly different atomic structures depending on the main parameters of the deposition process.

Beilstein J Nanotechnol ; 11: 1254-1263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32874825


We have investigated the structural, magnetic and superconduction properties of [Nb(1.5 nm)/Fe(x)]10 superlattices deposited on a thick Nb(50 nm) layer. Our investigation showed that the Nb(50 nm) layer grows epitaxially at 800 °C on the Al2O3(1-102) substrate. Samples grown at this condition possess a high residual resistivity ratio of 15-20. By using neutron reflectometry we show that Fe/Nb superlattices with x < 4 nm form a depth-modulated FeNb alloy with concentration of iron varying between 60% and 90%. This alloy has weak ferromagnetic properties. The proximity of this weak ferromagnetic layer to a thick superconductor leads to an intermediate phase that is characterized by a suppressed but still finite resistance of structure in a temperature interval of about 1 K below the superconducting transition of thick Nb. By increasing the thickness of the Fe layer to x = 4 nm the intermediate phase disappears. We attribute the intermediate state to proximity induced non-homogeneous superconductivity in the structure.

Beilstein J Nanotechnol ; 11: 1336-1345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974112


We present both theoretical and experimental investigations of the proximity effect in a stack-like superconductor/ferromagnetic (S/F) superlattice, where ferromagnetic layers with different thicknesses and coercive fields are made of Co. Calculations based on the Usadel equations allow us to find the conditions at which switching from the parallel to the antiparallel alignment of the neighboring F-layers leads to a significant change of the superconducting order parameter in superconductive thin films. We experimentally study the transport properties of a lithographically patterned Nb/Co multilayer. We observe that the resistive transition of the multilayer structure has multiple steps, which we attribute to the transition of individual superconductive layers with the critical temperature, T c, depending on the local magnetization orientation of the neighboring F-layers. We argue that such superlattices can be used as tunable kinetic inductors designed for artificial neural networks representing the information in a "current domain".

Beilstein J Nanotechnol ; 10: 833-839, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019870


We present a study of magnetic structures with controllable effective exchange energy for Josephson switches and memory applications. As a basis for a weak link we propose to use a periodic structure composed of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on the Usadel equations show that switching from parallel (P) to antiparallel (AP) alignment of neighboring F layers can lead to a significant enhancement of the critical current through the junction. To control the magnetic alignment we propose to use a periodic system whose unit cell is a pseudo spin valve of structure F1/s/F2/s where F1 and F2 are two magnetic layers having different coercive fields. In order to check the feasibility of controllable switching between AP and P states through the whole periodic structure, we prepared a superlattice [Co(1.5 nm)/Nb(8 nm)/Co(2.5 nm)/Nb(8 nm)]6 between two superconducting layers of Nb(25 nm). Neutron scattering and magnetometry data showed that parallel and antiparallel alignment can be controlled with a magnetic field of only several tens of Oersted.

Beilstein J Nanotechnol ; 7: 957-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547613


BACKGROUND: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature T c, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment. RESULTS: The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoO x an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc) non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoO x and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, d F1, of F1 and was found to decay with increasing d F1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory. CONCLUSION: The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance d F1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated) breakdown of the triplet spin-valve effect for d F1 smaller than 0.3 to 0.4 times the magnetic coherence length, ξF1.