Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Biomed Mater ; 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33264764

RESUMO

INTRODUCTION: The administration of trophic factors (TF) released by mesenchymal stromal cells (MSC) as therapy for cardiovascular diseases requires a delivery vehicle capable of binding and releasing the TF in a sustained manner. We hypothesized that hydrogels derived from the decellularized cardiac extracellular matrix (dECM) bind MSC secretome-derived TF and steadily release these. METHODS: Pig-derived ventricular tissue was decellularized, milled to powder, digested, and assembled as a hydrogel upon warming at 37°C. The conditioned medium (CMed) of adipose tissue-derived stromal cells (ASC) was collected, concentrated, and incorporated into the hydrogel at 1x, 10x, and 100x the original concentration. The release of 11 ASC-secreted factors (angiopoietin-1, angiopoietin-2, FGF-1, HGF, PDGF-AA, VEGF-A, IL-1ß, IL-6, IL-8, CXCL8, and MMP-1) from hydrogels was immune assessed. Bioactivity was determined by endothelial cell proliferation, function, and assessment of endothelial mesenchymal transition. RESULTS: We showed that dECM hydrogels could be loaded with human ASC-secreted trophic factors, which are released in a sustained manner for several days subsequently. Different trophic factors had different release kinetics, which correlates with the initial concentration of CMed in the hydrogel. We observed that the more concentrated was the hydrogel, the more inflammation-related cytokines, and the less pro-regenerative trophic factors were released. Finally, we showed that the factors secreted by the hydrogel are biologically active as these influence cell behavior. CONCLUSION: The use of dECM hydrogels as a platform to bind and release paracrine factors secreted by (mesenchymal) cells is a potential alternative in the context of cardiovascular regeneration.

2.
Transplantation ; 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33031230

RESUMO

BACKGROUND: Brain death (BD) affects the viability of lungs for transplantation. A correlation exists between high lung inflammation after BD and the decrease in female sex hormones, especially estradiol. Therefore, we investigated the effects of 17ß-estradiol (E2) treatment on the lungs of female brain dead rats. METHODS: Female Wistar rats were divided into 4 groups: BD (submitted to BD for 6 h), sham (false-operated), E2-T0 (treated with E2 immediately after BD; 50 µg/ml, 2 ml/h), and E2-T3 (treated with E2 after 3 h of BD; 50 µg/ml, 2 ml/h). Lung edema, hemorrhage, and leukocyte infiltration were analyzed. Adhesion molecules were evaluated and analysis of NO synthase gene and protein expression was performed using RT-PCR and immunohistochemistry, respectively. Release of chemokines and matrix degradation in the lungs were analyzed. RESULTS: BD increased leukocyte infiltration, as shown by intravital microscopy (P=0.017), bronchoalveolar lavage cell count (P=0.016), the release of inflammatory mediators (P=0.02), and expression of adhesion molecules. BD also increased microvascular permeability and the expression and activity of MMP-9 in the lungs. E2 treatment reduced leukocyte infiltration, especially in the E2-T3 group, release of inflammatory mediators, adhesion molecules, and MMP activity in the lungs. CONCLUSIONS: E2 treatment was successful in controlling the lung inflammatory response in females submitted to BD. Our results suggest that E2 directly decreases the release of chemokines, restraining cell traffic into the lungs. Thus, E2 has a therapeutic potential, and its role in improving donor lung quality should be explored further.

3.
Transpl Int ; 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32890430

RESUMO

Brain death (BD) leads to a systemic inflammation associated with the activation of coagulation, which could be related to decreased microcirculatory perfusion. Evidence shows that females exhibit higher platelet aggregability than males. Thus, we investigated sex differences in platelets, coagulation and microcirculatory compromise after BD. BD was induced in male and female (proestrus) Wistar rats. After 3 h, we evaluated: (i) intravital microscopy to evaluate mesenteric perfusion and leucocyte infiltration; (ii) platelet aggregation assay; (iii) rotational thromboelastometry; and (iv) Serum NO x - . Female rats maintained the mesenteric perfusion, whereas male reduced percentage of perfused vessels. Male BD presented higher platelet aggregation than the controls. In contrast, female BD had lower platelet aggregation than the control. Thromboelastometry indicated a reduction in clot firmness with increased clotting time in the female group compared with the male group. Serum NO x - level in female BD was higher than that in the male BD and female control. There is sex dimorphism in platelet function and clotting process, which are altered in different ways by BD. Thus, it is possible to connect the reduction in microcirculatory perfusion in males to intravascular microthrombi formation and the maintenance of perfusion in females to a higher inflammatory response and NO synthesis.

4.
Transpl Int ; 33(10): 1312-1321, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32621784

RESUMO

The viability of donor organs is reduced by hemodynamic and immunologic alterations caused by brain death (BD). Female rats show higher heart inflammation associated with the reduction in female sex hormones after BD. This study investigated the effect of 17ß-estradiol (E2) on BD-induced cardiac damage in female rats. Groups of female Wistar rats were assigned: Sham-operation (Sham), brain death (BD), treatment with E2 (50 µg/ml, 2 ml/h) 3 h after BD (E2-T3), or immediately after BD confirmation (E2-T0). White blood cell (WBC) count was analyzed; cytokines and troponin-I were quantified. Heart histopathological changes and expression of endothelial nitric oxide synthase, endothelin-1, intercellular adhesion molecule-1, BCL-2, and caspase-3 were evaluated. Cardiac function was continuously assessed for 6 h by left ventricular pressure-volume loop analysis. E2 decreased the BD-induced median serum concentration of troponin-I (BD:864.2 vs. E2-T0:401.4; P = 0.009), increased BCL-2 (BD:0.086 vs. E2-T0:0.158; P = 0.0278) and eNOS median expression in the cardiac tissue (BD:0.001 vs. E2-T0:0.03 and E2-T3:0.0175; P < 0.0001), and decreased caspase-3 (BD:0.025 vs. E2-T0:0.006 and E2-T3:0.019; P = 0.006), WBC counts, leukocyte infiltration, and hemorrhage. 17ß-estradiol treatment was effective in reducing cardiac tissue damage in brain-dead female rats owing to its ability to reduce leukocyte infiltration and prevent cardiomyocyte apoptosis.

5.
Tissue Eng Part A ; 26(21-22): 1128-1137, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32486914

RESUMO

The difficulty in the regeneration of cardiomyocytes after myocardial infarction is a major cause of heart failure. Together, the amniotic membrane and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) can help in the recovery of cardiomyocyte, as they present many growth factors and anti-inflammatory effect, respectively. The objective of this study is to compare the efficacy of Human Decellularized Amniotic Membrane Scaffold (AHAS) loaded with 15d-PGJ2 in improving ventricular function in a rat model of postinfarct ventricular dysfunction. Myocardial infarction was induced in 24 rats by left coronary occlusion. After a week, the animals were subjected to echocardiography for evaluation of left ventricle ejection fraction (LVEF), left ventricle end diastolic volume (LVEDV), and left ventricle end systolic volume (LVESV). Animals with ejection fraction <40% were included in the study and were randomized into three groups: control (n = 8), AHAS (n = 8) and AHAS +15d-PGJ2 (n = 8). In the AHAS group only the membrane was implanted, whereas in the AHAS +15d-PGJ2 the membrane +15d-PGJ2 was implanted on myocardial infarction. Echocardiographic evaluation was performed after 1 month. For histological analysis, heart tissue was stained with Gomori trichome, Sirius Red, the antibody against CD31 and connexin 43 (Cx43). There were no significant differences in the baseline LVEF, LVEDV, and LVESV in all groups. After 1 month, ejection fraction decreased in the control group but increased in the AHAS group and in the AHAS +15d-PGJ2 group in comparison with the control group. The LVEDV and LVESV in the AHAS and AHAS +15d-PGJ2 groups decreased compared with the control group, featuring a ventricular antiremodeling effect. Histopathology of the infarcted area identified the reduction of infarct size and collagen type 1 in the AHAS and AHAS +15d-PGJ2 groups. New blood vessels and cardiomyocytes have been identified in an infarcted area by CD31 and Cx43. AHAS +15d-PGJ2 provided an increase in the ejection fraction and prevented ventricular dilation in this postinfarction ventricular dysfunction model. Impact Statement Our study demonstrated reduction of myocardial fibrosis, proliferation of cardiomyocytes and increase in ejection fraction in rats after experimental acellular amniotic membrane scaffold (AHAS) carrying nanoparticles of 15d-PGJ2 scaffold engraftment in infarcted myocardium. AHAS grafts facilitated colonization of fibrotic myocardium regions with new contractile cells, in addition to preventing reduction of left ventricle wall thickness. This contribution is theoretically and practically relevant as current literature describes experimental studies performed on cardiac ischemic models which present conflicting results concerning cell types used in a research model.

6.
Clinics (Sao Paulo) ; 75: e1980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32490931

RESUMO

Considering that female sexual hormones may modulate the inflammatory response and also exhibit direct effects on the cells of the immune system, herein, we intend to discuss the sex differences and the role of estradiol in modulating the lung and systemic inflammatory response, focusing on its possible application as a treatment modality for SARS-CoV-2 patients. COVID-19 patients develop severe hypoxemia early in the course of the disease, which is silent most of the time. Small fibrinous thrombi in pulmonary arterioles and a tumefaction of endothelial were observed in the autopsies of fatal COVID-19 cases. Studies showed that the viral infection induces a vascular process in the lung, which included vasodilation and endothelial dysfunction. Further, the proportions of CD4+ T and CD8+ T lymphocytes were strongly reduced in patients with severe SARS-CoV-2 infection. Estradiol is connected with CD4+ T cell numbers and increases T-reg cell populations, affecting immune responses to infection. It is known that estradiol exerts a protective effect on endothelial function, activating the generation of nitric oxide (NO) via endothelial nitric oxide synthase. Estrogen attenuates the vasoconstrictor response to various stimuli and induces vasodilation in the pulmonary vasculature during stress situations like hypoxia. It exerts a variety of rapid actions, which are initiated after its coupling with membrane receptors, which in turn, may positively modulate vascular responses in pulmonary disease and help to maintain microvascular flow. Direct and indirect mechanisms underlying the effects of estradiol were investigated, and the results point to a possible protective effect of estradiol against COVID-19, indicating that it may be considered as an adjuvant therapeutic element for the treatment of patients affected by the novel coronavirus.


Assuntos
Betacoronavirus , Infecções por Coronavirus/terapia , Estradiol/uso terapêutico , Imunidade Inata , Inflamação/virologia , Pneumonia Viral/terapia , Animais , Feminino , Humanos , Inflamação/tratamento farmacológico , Masculino , Pandemias , Ratos , Fatores Sexuais
7.
Artigo em Inglês | MEDLINE | ID: mdl-32548106

RESUMO

Decellularized-organ-derived extracellular matrix (dECM) has been used for many years in tissue engineering and regenerative medicine. The manufacturing of hydrogels from dECM allows to make use of the pro-regenerative properties of the ECM and, simultaneously, to shape the material in any necessary way. The objective of the present project was to investigate differences between cardiovascular tissues (left ventricle, mitral valve, and aorta) with respect to generating dECM hydrogels and their interaction with cells in 2D and 3D. The left ventricle, mitral valve, and aorta of porcine hearts were decellularized using a series of detergent treatments (SDS, Triton-X 100 and deoxycholate). Mass spectrometry-based proteomics yielded the ECM proteins composition of the dECM. The dECM was digested with pepsin and resuspended in PBS (pH 7.4). Upon warming to 37°C, the suspension turns into a gel. Hydrogel stiffness was determined for samples with a dECM concentration of 20 mg/mL. Adipose tissue-derived stromal cells (ASC) and a combination of ASC with human pulmonary microvascular endothelial cells (HPMVEC) were cultured, respectively, on and in hydrogels to analyze cellular plasticity in 2D and vascular network formation in 3D. Differentiation of ASC was induced with 10 ng/mL of TGF-ß1 and SM22α used as differentiation marker. 3D vascular network formation was evaluated with confocal microscopy after immunofluorescent staining of PECAM-1. In dECM, the most abundant protein was collagen VI for the left ventricle and mitral valve and elastin for the aorta. The stiffness of the hydrogel derived from the aorta (6,998 ± 895 Pa) was significantly higher than those derived from the left ventricle (3,384 ± 698 Pa) and the mitral valve (3,233 ± 323 Pa) (One-way ANOVA, p = 0.0008). Aorta-derived dECM hydrogel drove non-induced (without TGF-ß1) differentiation, while hydrogels derived from the left ventricle and mitral valve inhibited TGF-ß1-induced differentiation. All hydrogels supported vascular network formation within 7 days of culture, but ventricular dECM hydrogel demonstrated more robust vascular networks, with thicker and longer vascular structures. All the three main cardiovascular tissues, myocardium, valves, and large arteries, could be used to fabricate hydrogels from dECM, and these showed an origin-dependent influence on ASC differentiation and vascular network formation.

8.
Transplantation ; 104(9): 1862-1868, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32345867

RESUMO

BACKGROUND: Intestine graft viability compromises retrieval in most brain-dead donors. Small bowel transplantation is a complex procedure with worse outcomes than transplantation of other abdominal organs. The hormone 17ß-estradiol (E2) has shown vascular protective effects in lung tissue of brain death (BD) male rats. Thus, estradiol might be a treatment option to improve the quality of intestinal grafts. METHODS: Male Wistar rats were divided into 3 groups (n = 10/group): rats that were trepanned only (sham-operated), rats subjected to rapid-onset BD, and brain-dead rats treated with E2 (280 µg/kg, intravenous) (BD-E2). Experiments performed for 180 minutes thereafter are included: (a) laser-Doppler flowmetry and intravital microscopy to evaluate mesenteric perfusion; (b) histopathological analysis; (c) real-time polymerase chain reaction of endothelial nitric oxide synthase (eNOS) and endothelin-1; (d) immunohistochemistry of eNOS, endothelin-1, P-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 expression; and (e) ELISA for cytokines and chemokines measurement. RESULTS: 17ß-Estradiol improved microcirculatory perfusion and reduced intestinal edema and hemorrhage after BD. The proportions of perfused small vessels were (mean ± scanning electron microscope) BD rats (40% ± 6%), sham-operated rats (75% ± 8%), and BD-E2 rats (67% ± 5%) (P = 0.011). 17ß-Estradiol treatment was associated with 2-fold increase in eNOS protein (P < 0.0001) and gene (P = 0.0009) expression, with no differences in endothelin-1 expression. BD-E2 rats exhibited a reduction in vascular cell adhesion molecule 1 expression and reduced cytokine-induced neutrophil chemoattractant 1 and interleukina-10 serum levels. CONCLUSIONS: 17ß-Estradiol was effective in improving mesenteric perfusion and reducing intestinal edema and hemorrhage associated with BD. The suggestion is that E2 might be considered a therapy to mitigate, at least in part, the deleterious effects of BD in small bowel donors.


Assuntos
Morte Encefálica/fisiopatologia , Estradiol/farmacologia , Intestino Delgado/transplante , Microcirculação/efeitos dos fármacos , Perfusão , Doadores de Tecidos , Animais , Citocinas/sangue , Hemorragia Gastrointestinal/prevenção & controle , Intestino Delgado/patologia , Masculino , Ratos , Ratos Wistar , Circulação Esplâncnica/efeitos dos fármacos
10.
J Bras Pneumol ; 46(2): e20180299, 2020.
Artigo em Português, Inglês | MEDLINE | ID: mdl-32130341

RESUMO

OBJECTIVE: Brain death (BD) triggers important hemodynamic and inflammatory alterations, compromising the viability of organs suitable for transplantation. To better understand the microcirculatory alterations in donor lungs caused by BD. The present study investigated the pulmonary microcirculation in a rodent model of BD via intravital microscopy. METHODS: Male Wistar rats were anaesthetized and mechanically ventilated. They were trepanned and BD was induced through the increase in intracranial pressure. As control group, sham-operated (SH) rats were trepanned only. In both groups, expiratory O2 and CO2 were monitored and after three hours, a thoracotomy was performed, and a window was created to observe the lung surface using an epi-fluorescence intravital microscopy. Lung expression of intercellular adhesion molecule (ICAM)-1 and endothelial nitric oxide synthase (eNOS) was evaluated by immunohistochemistry, and cytokines were measured in lung samples. RESULTS: Three hours after the surgical procedures, pulmonary perfusion was 73% in the SH group. On the other hand, BD animals showed an important decrease in organ perfusion to 28% (p = 0.036). Lung microcirculatory compromise after BD induction was associated with an augmentation of the number of leukocytes recruited to lung tissue, and with a reduction in eNOS expression and an increase in ICAM-1 expression on lung endothelial cells. BD rats showed higher values of expiratory O2 and lower values of CO2 in comparison with SH animals after three hours of monitoring. CONCLUSION: Data presented showed that BD triggers an important hypoperfusion and inflammation in the lungs, compromising the donor pulmonary microcirculation.


Assuntos
Morte Encefálica/fisiopatologia , Células Endoteliais , Pulmão/irrigação sanguínea , Microcirculação/fisiologia , Doadores de Tecidos , Animais , Masculino , Microvasos , Modelos Teóricos , Ratos , Ratos Wistar
11.
Transpl Int ; 33(3): 279-287, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31701582

RESUMO

Organ donor's age negatively influences graft survival of organs, increasing risk of complications. Aging occurs in both men and women; however, the menopause marks a decrease in sex hormones and a sudden increase in the process of vascular aging. We investigated sex hormones' influence on the lung inflammatory process induced by BD in female rats. Wistar rats were grouped as: female rats from high estradiol to heat period (non-OVx) and ovariectomized (OVx) female rats. Ovariectomy was carried out 10 days before BD. BD was induced using intracranial balloon rapid inflation. Serum hormones and inflammatory mediators were quantified, leukocytes and platelets counted and lung samples were collected for RT-PCR, immunohistochemical, and histological analysis. Female sex hormones and corticosterone were reduced 6 h after BD in non-OVx group. The infiltration of leukocytes in female non-OVx lungs was higher compared to OVx. G-CSF, VEGF, and CINC-1 were found increased in non-OVx group serum in comparison to OVx. Lung mediators were increased in non-OVx rats compared to controls. The acute reduction of sex hormones induced by BD appears to have a worse effect on lung inflammation than a reduction that has happened over a prolonged period of time, allowing a physiological adaptation prior to BD.

12.
J Thorac Cardiovasc Surg ; 160(3): e135-e144, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31653422

RESUMO

OBJECTIVE: The study objective was to evaluate the effect of bilateral sympathectomy on ventricular remodeling and function in a rat model of dilated cardiomyopathy induced by doxorubicin. METHODS: Dilated cardiomyopathy was induced in male Wistar rats by weekly intraperitoneal injection of doxorubicin (2 mg/kg) for 9 weeks. Animals were divided into 4 groups: dilated cardiomyopathy; bilateral sympathectomy, submitted on day 15 of the protocol to bilateral sympathectomy; angiotensin-converting enzyme inhibitor, treated with enalapril through day 15 until the end of the experimental protocol; and sham, nonsubmitted through doxorubicin protocol, with weekly intraperitoneal injections of saline solution (0.9%). The left ventricular function was assessed, and the heart was collected for posterior analyses. RESULTS: The dilated cardiomyopathy group presented a significant decrease in the myocardial efficiency when compared with the sham group (33.4% vs 71.2%). Only the bilateral sympathectomy group was able to preserve it (57.5%; P = .0001). A significant dilatation in the left ventricular chamber was observed in the dilated cardiomyopathy group (15.9 µm2) compared with the sham group (10.2 µm2; P = .0053). Sympathectomy and enalapril prevented ventricular remodeling (9.5 and 9.6 µm2, respectively; P = .0034). There was a significant increase in interstitial myocardial fibrosis in the dilated cardiomyopathy group (14.8%) when compared with the sham group (2.4%; P = .0001). This process was significantly reduced with sympathectomy and enalapril (8.7 and 3.9%, respectively; P = .0001). CONCLUSIONS: Bilateral sympathectomy was effective in preventing remodeling and left ventricular dysfunction in a rat model of dilated cardiomyopathy induced by doxorubicin.


Assuntos
Cardiomiopatia Dilatada/induzido quimicamente , Cardiomiopatia Dilatada/cirurgia , Doxorrubicina/toxicidade , Simpatectomia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Modelos Animais de Doenças , Enalapril/administração & dosagem , Humanos , Masculino , Ratos , Ratos Wistar , Disfunção Ventricular Esquerda/prevenção & controle , Remodelação Ventricular
13.
Clinics ; 75: e1980, 2020. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1133360

RESUMO

Considering that female sexual hormones may modulate the inflammatory response and also exhibit direct effects on the cells of the immune system, herein, we intend to discuss the sex differences and the role of estradiol in modulating the lung and systemic inflammatory response, focusing on its possible application as a treatment modality for SARS-CoV-2 patients. COVID-19 patients develop severe hypoxemia early in the course of the disease, which is silent most of the time. Small fibrinous thrombi in pulmonary arterioles and a tumefaction of endothelial were observed in the autopsies of fatal COVID-19 cases. Studies showed that the viral infection induces a vascular process in the lung, which included vasodilation and endothelial dysfunction. Further, the proportions of CD4+ T and CD8+ T lymphocytes were strongly reduced in patients with severe SARS-CoV-2 infection. Estradiol is connected with CD4+ T cell numbers and increases T-reg cell populations, affecting immune responses to infection. It is known that estradiol exerts a protective effect on endothelial function, activating the generation of nitric oxide (NO) via endothelial nitric oxide synthase. Estrogen attenuates the vasoconstrictor response to various stimuli and induces vasodilation in the pulmonary vasculature during stress situations like hypoxia. It exerts a variety of rapid actions, which are initiated after its coupling with membrane receptors, which in turn, may positively modulate vascular responses in pulmonary disease and help to maintain microvascular flow. Direct and indirect mechanisms underlying the effects of estradiol were investigated, and the results point to a possible protective effect of estradiol against COVID-19, indicating that it may be considered as an adjuvant therapeutic element for the treatment of patients affected by the novel coronavirus.

14.
J. bras. pneumol ; 46(2): e20180299, 2020. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1090803

RESUMO

RESUMO Objetivo A morte cerebral (MC) desencadeia alterações hemodinâmicas e inflamatórias importantes, comprometendo a viabilidade dos órgãos empregados em transplantes. Para compreender melhor as alterações microcirculatórias nos pulmões de doadores com MC, o presente estudo investigou a microcirculação pulmonar em um modelo de roedor com MC via microscopia intravital. Métodos Ratos Wistar machos foram anestesiados e ventilados mecanicamente. Eles foram submetidos a trepanação e a MC induzida por meio do aumento da pressão intracraniana. Os ratos do grupo Sham (SH), utilizado como controle, foram submetidos apenas à trepanação. Em ambos os grupos, foram monitorados o O2 expiratório e o CO2, e, após 3 horas, foi realizada a toracotomia e criada uma janela para observar a superfície pulmonar usando o sistema de microscopia intravital. As expressões pulmonares das moléculas de adesão intercelular (ICAM)-1 e da óxido nítrico-sintase endotelial (eNOS) foram avaliadas por imuno-histoquímica, e as citocinas foram medidas em amostras pulmonares. Resultados Três horas após os procedimentos cirúrgicos, a perfusão pulmonar foi de 73% no grupo SH. Por outro lado, os animais com MC apresentaram uma importante diminuição na perfusão do órgão para 28% (p = 0,036). O comprometimento microcirculatório pulmonar após a indução de MC foi associado a um aumento do número de leucócitos recrutados para o tecido pulmonar, além de uma redução na expressão de eNOS e um aumento na expressão de ICAM-1 nas células endoteliais do pulmão. Os ratos com MC apresentaram valores mais elevados de O2 expiratório e valores mais baixos de CO2 em comparação com os animais SH após 3 horas de monitorização. Conclusões Os dados apresentados demonstraram que a MC desencadeia uma importante hipoperfusão e inflamação nos pulmões, comprometendo a microcirculação pulmonar do doador.


ABSTRACT Objective Brain death (BD) triggers important hemodynamic and inflammatory alterations, compromising the viability of organs suitable for transplantation. To better understand the microcirculatory alterations in donor lungs caused by BD. The present study investigated the pulmonary microcirculation in a rodent model of BD via intravital microscopy. Methods Male Wistar rats were anaesthetized and mechanically ventilated. They were trepanned and BD was induced through the increase in intracranial pressure. As control group, sham-operated (SH) rats were trepanned only. In both groups, expiratory O2 and CO2 were monitored and after three hours, a thoracotomy was performed, and a window was created to observe the lung surface using an epi-fluorescence intravital microscopy. Lung expression of intercellular adhesion molecule (ICAM)-1 and endothelial nitric oxide synthase (eNOS) was evaluated by immunohistochemistry, and cytokines were measured in lung samples. Results Three hours after the surgical procedures, pulmonary perfusion was 73% in the SH group. On the other hand, BD animals showed an important decrease in organ perfusion to 28% (p = 0.036). Lung microcirculatory compromise after BD induction was associated with an augmentation of the number of leukocytes recruited to lung tissue, and with a reduction in eNOS expression and an increase in ICAM-1 expression on lung endothelial cells. BD rats showed higher values of expiratory O2 and lower values of CO2 in comparison with SH animals after three hours of monitoring. Conclusion Data presented showed that BD triggers an important hypoperfusion and inflammation in the lungs, compromising the donor pulmonary microcirculation.

16.
Cell Prolif ; 52(6): e12629, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31468648

RESUMO

OBJECTIVES: Endothelial cells undergo TGF-ß-driven endothelial-mesenchymal transition (EndMT), representing up to 25% of cardiac myofibroblasts in ischaemic hearts. Previous research showed that conditioned medium of adipose tissue-derived stromal cells (ASC-CMed) blocks the activation of fibroblasts into fibrotic myofibroblasts. We tested the hypothesis that ASC-CMed abrogates EndMT and prevents the formation of adverse myofibroblasts. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVEC) were treated with IL-1ß and TGF-ß2 to induce EndMT, and the influence of ASC-CMed was assessed. As controls, non-treated HUVEC or HUVEC treated only with IL-1ß in the absence or presence of ASC-CMed were used. Gene expression of inflammatory, endothelial, mesenchymal and extracellular matrix markers, transcription factors and cell receptors was analysed by RT-qPCR. The protein expression of endothelial and mesenchymal markers was evaluated by immunofluorescence microscopy and immunoblotting. Endothelial cell function was measured by sprouting assay. RESULTS: IL-1ß/TGF-ß2 treatment induced EndMT, as evidenced by the change in HUVEC morphology and an increase in mesenchymal markers. ASC-CMed blocked the EndMT-related fibrotic processes, as observed by reduced expression of mesenchymal markers TAGLN (P = 0.0008) and CNN1 (P = 0.0573), as well as SM22α (P = 0.0501). The angiogenesis potential was impaired in HUVEC undergoing EndMT and could not be restored by ASC-CMed. CONCLUSIONS: We demonstrated that ASC-CMed reduces IL-1ß/TGF-ß2-induced EndMT as observed by the loss of mesenchymal markers. The present study supports the anti-fibrotic effects of ASC-CMed through the modulation of the EndMT process.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Interleucina-1beta/farmacologia , Células Estromais/efeitos dos fármacos , Fator de Crescimento Transformador beta2/farmacologia , Tecido Adiposo/efeitos dos fármacos , Células Cultivadas , Transição Epitelial-Mesenquimal/genética , Humanos , Interleucina-1beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Stem Cells Int ; 2019: 5387850, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191675

RESUMO

Introduction: Progenitor cells cultured on biomaterials with optimal physical-topographical properties respond with alignment and differentiation. Stromal cells from connective tissue can adversely differentiate to profibrotic myofibroblasts or favorably to smooth muscle cells (SMC). We hypothesized that myogenic differentiation of adipose tissue-derived stromal cells (ASC) depends on gradient directional topographic features. Methods: Polydimethylsiloxane (PDMS) samples with nanometer and micrometer directional topography gradients (wavelength (w) = 464-10, 990 nm; amplitude (a) = 49-3, 425 nm) were fabricated. ASC were cultured on patterned PDMS and stimulated with TGF-ß1 to induce myogenic differentiation. Cellular alignment and adhesion were assessed by immunofluorescence microscopy after 24 h. After seven days, myogenic differentiation was examined by immunofluorescence microscopy, gene expression, and immunoblotting. Results: Cell alignment occurred on topographies larger than w = 1758 nm/a = 630 nm. The number and total area of focal adhesions per cell were reduced on topographies from w = 562 nm/a = 96 nm to w = 3919 nm/a = 1430 nm. Focal adhesion alignment was increased on topographies larger than w = 731 nm/a = 146 nm. Less myogenic differentiation of ASC occurred on topographies smaller than w = 784 nm/a = 209 nm. Conclusion: ASC adherence, alignment, and differentiation are directed by topographical cues. Our evidence highlights a minimal topographic environment required to facilitate the development of aligned and differentiated cell layers from ASC. These data suggest that nanotopography may be a novel tool for inhibiting fibrosis.

18.
Shock ; 51(4): 495-501, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29688986

RESUMO

BACKGROUND: Brain death (BD) induces hemodynamic instability with microcirculatory hypoperfusion, leading to increased organ inflammation and dysfunction. This study investigated the effects of 7.5% hypertonic saline solution (HSS) on mesenteric microcirculatory dysfunction and inflammation in a rat model of BD. METHODS: Male Wistar rats were anesthetized and mechanically ventilated. BD was induced by rapidly inflating an intracranial balloon catheter. The rats were randomly divided into: SH, sham-operated rats subjected to trepanation; NS, rats treated with NaCl 0.9%, 4 mL/kg immediately after BD; T1, rats treated with HSS (NaCl 7.5%, 4 mL/kg) immediately or 60 min after BD, T60. All groups were analyzed 180 min after the start of the experiment. RESULTS: Rats in BD groups presented with a similar hypertensive peak, followed by hypotension. Proportion of perfused small vessels was decreased in the NS group (46%) compared with the SH group (74%, P = 0.0039). HSS restored the proportion of perfused vessels (T1 = 71%, P = 0.0018). The anti-endothelial nitric oxide synthase (eNOS) protein expression significantly increased in rats given HSS (T1, and T60, P = 0.0002). Similar results were observed regarding endothelin-1 (P < 0.0001). Increased numbers of rolling (P = 0.0015) and migrated (P = 0.0063) leukocytes were observed in the NS group compared with the SH group. Rats given HSS demonstrated an overall reduction in leukocyte-endothelial interactions. The ICAM-1 levels increased in the NS group compared with the SH group, and decreased in the HSS-treated groups (P = 0.0002). CONCLUSIONS: HSS may improve the density of mesenteric perfused small vessels due to its effects on eNOS and endothelin-1 protein expression, and reduces inflammation by decreasing leukocyte adhesion and migration in a rat model of BD.


Assuntos
Morte Encefálica/imunologia , Morte Encefálica/fisiopatologia , Solução Salina Hipertônica/farmacologia , Solução Salina Hipertônica/uso terapêutico , Animais , Eletrólitos , Endotelina-1/metabolismo , Hemodinâmica/efeitos dos fármacos , Imuno-Histoquímica , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Microcirculação/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Selectina-P/metabolismo , Ratos , Ratos Wistar
20.
Sci Rep ; 8(1): 16633, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413733

RESUMO

Transforming growth factor-ß1 (TGF-ß1) is a potent inducer of fibroblast to myofibroblast differentiation and contributes to the pro-fibrotic microenvironment during cardiac remodeling. Fibroblast growth factor-2 (FGF-2) is a growth factor secreted by adipose tissue-derived stromal cells (ASC) which can antagonize TGF-ß1 signaling. We hypothesized that TGF-ß1-induced cardiac fibroblast to myofibroblast differentiation is abrogated by FGF-2 and ASC conditioned medium (ASC-CMed). Our experiments demonstrated that TGF-ß1 treatment-induced cardiac fibroblast differentiation into myofibroblasts, as evidenced by the formation of contractile stress fibers rich in αSMA. FGF-2 blocked the differentiation, as evidenced by the reduction in gene (TAGLN, p < 0.0001; ACTA2, p = 0.0056) and protein (αSMA, p = 0.0338) expression of mesenchymal markers and extracellular matrix components gene expression (COL1A1, p < 0.0001; COL3A1, p = 0.0029). ASC-CMed did not block myofibroblast differentiation. The treatment with FGF-2 increased matrix metalloproteinases gene expression (MMP1, p < 0.0001; MMP14, p = 0.0027) and decreased the expression of tissue inhibitor of metalloproteinase gene TIMP2 (p = 0.0023). ASC-CMed did not influence these genes. The proliferation of TGF-ß1-induced human cardiac fibroblasts was restored by both FGF-2 (p = 0.0002) and ASC-CMed (p = 0.0121). The present study supports the anti-fibrotic effects of FGF-2 through the blockage of cardiac fibroblast differentiation into myofibroblasts. ASC-CMed, however, did not replicate the anti-fibrotic effects of FGF-2 in vitro.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/citologia , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/citologia , Miofibroblastos/citologia , Fator de Crescimento Transformador beta1/farmacologia , Células Cultivadas , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA