Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 105(4): 706-718, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564435

RESUMO

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (-0.88% in hemizygous males, -0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; -0.98% in hemizygous males, -0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.

2.
PLoS One ; 14(6): e0218115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242253

RESUMO

AIMS: Statin-related myopathy (SRM), which includes rhabdomyolysis, is an uncommon but important adverse drug reaction because the number of people prescribed statins world-wide is large. Previous association studies of common genetic variants have had limited success in identifying a genetic basis for this adverse drug reaction. We conducted a multi-site whole-exome sequencing study to investigate whether rare coding variants confer an increased risk of SRM. METHODS AND RESULTS: SRM 3-5 cases (N = 505) and statin treatment-tolerant controls (N = 2047) were recruited from multiple sites in North America and Europe. SRM 3-5 was defined as symptoms consistent with muscle injury and an elevated creatine phosphokinase level >4 times upper limit of normal without another likely cause of muscle injury. Whole-exome sequencing and variant calling was coordinated from two analysis centres, and results of single-variant and gene-based burden tests were meta-analysed. No genome-wide significant associations were identified. Given the large number of cases, we had 80% power to identify a variant with minor allele frequency of 0.01 that increases the risk of SRM 6-fold at genome-wide significance. CONCLUSIONS: In this large whole-exome sequencing study of severe statin-related muscle injury conducted to date, we did not find evidence that rare coding variants are responsible for this adverse drug reaction. Larger sample sizes would be required to identify rare variants with small effects, but it is unclear whether such findings would be clinically actionable.

3.
Arterioscler Thromb Vasc Biol ; 39(7): 1475-1482, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31092011

RESUMO

Objective- Alterations in the serum metabolome may be detectable in at-risk individuals before the onset of coronary heart disease (CHD). Identifying metabolomic signatures associated with CHD may provide insight into disease pathophysiology and prevention. Approach and Results- Metabolomic profiling (chromatography-mass spectrometry) was performed in 2232 African Americans and 1366 European Americans from the ARIC study (Atherosclerosis Risk in Communities). We applied Cox regression with least absolute shrinkage and selection operator to select metabolites associated with incident CHD. A metabolite risk score was constructed to evaluate whether the metabolite risk score predicted CHD risk beyond traditional risk factors. After 30 years of follow-up, we observed 633 incident CHD cases. Thirty-two metabolites were selected by least absolute shrinkage and selection operator to be associated with CHD, and 19 of the 32 showed significant individual associations with CHD, including a sugar substitute, erythritol. Theophylline (hazard ratio [95% CI] =1.16 [1.09-1.25]) and gamma-linolenic acid (hazard ratio [95% CI] =0.89 [0.81-0.97]) showed the greatest positive and negative associations with CHD, respectively. A 1 SD greater standardized metabolite risk score was associated with a 1.37-fold higher risk of CHD (hazard ratio [95% CI] =1.37 [1.27-1.47]). Adding the metabolite risk score to the traditional risk factors significantly improved model predictive performance (30-year risk prediction: Δ C statistics [95% CI] =0.016 [0.008-0.024], continuous net reclassification index [95% CI] =0.522 [0.480-0.556], integrated discrimination index [95% CI] =0.038 [0.019-0.065]). Conclusions- We identified 19 metabolites from known and novel metabolic pathways that collectively improved CHD risk prediction. Visual Overview- An online visual overview is available for this article.

4.
Am J Hum Genet ; 104(5): 802-814, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982610

RESUMO

Whole-genome sequencing (WGS) studies are being widely conducted in order to identify rare variants associated with human diseases and disease-related traits. Classical single-marker association analyses for rare variants have limited power, and variant-set-based analyses are commonly used by researchers for analyzing rare variants. However, existing variant-set-based approaches need to pre-specify genetic regions for analysis; hence, they are not directly applicable to WGS data because of the large number of intergenic and intron regions that consist of a massive number of non-coding variants. The commonly used sliding-window method requires the pre-specification of fixed window sizes, which are often unknown as a priori, are difficult to specify in practice, and are subject to limitations given that the sizes of genetic-association regions are likely to vary across the genome and phenotypes. We propose a computationally efficient and dynamic scan-statistic method (Scan the Genome [SCANG]) for analyzing WGS data; this method flexibly detects the sizes and the locations of rare-variant association regions without the need to specify a prior, fixed window size. The proposed method controls for the genome-wise type I error rate and accounts for the linkage disequilibrium among genetic variants. It allows the detected sizes of rare-variant association regions to vary across the genome. Through extensive simulated studies that consider a wide variety of scenarios, we show that SCANG substantially outperforms several alternative methods for detecting rare-variant-associations while controlling for the genome-wise type I error rates. We illustrate SCANG by analyzing the WGS lipids data from the Atherosclerosis Risk in Communities (ARIC) study.

5.
Am J Hum Genet ; 104(3): 410-421, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849328

RESUMO

Set-based analysis that jointly tests the association of variants in a group has emerged as a popular tool for analyzing rare and low-frequency variants in sequencing studies. The existing set-based tests can suffer significant power loss when only a small proportion of variants are causal, and their powers can be sensitive to the number, effect sizes, and effect directions of the causal variants and the choices of weights. Here we propose an aggregated Cauchy association test (ACAT), a general, powerful, and computationally efficient p value combination method for boosting power in sequencing studies. First, by combining variant-level p values, we use ACAT to construct a set-based test (ACAT-V) that is particularly powerful in the presence of only a small number of causal variants in a variant set. Second, by combining different variant-set-level p values, we use ACAT to construct an omnibus test (ACAT-O) that combines the strength of multiple complimentary set-based tests, including the burden test, sequence kernel association test (SKAT), and ACAT-V. Through analysis of extensively simulated data and the whole-genome sequencing data from the Atherosclerosis Risk in Communities (ARIC) study, we demonstrate that ACAT-V complements the SKAT and the burden test, and that ACAT-O has a substantially more robust and higher power than those of the alternative tests.

6.
Blood ; 133(9): 967-977, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30642921

RESUMO

Factor VII (FVII) is an important component of the coagulation cascade. Few genetic loci regulating FVII activity and/or levels have been discovered to date. We conducted a meta-analysis of 9 genome-wide association studies of plasma FVII levels (7 FVII activity and 2 FVII antigen) among 27 495 participants of European and African ancestry. Each study performed ancestry-specific association analyses. Inverse variance weighted meta-analysis was performed within each ancestry group and then combined for a trans-ancestry meta-analysis. Our primary analysis included the 7 studies that measured FVII activity, and a secondary analysis included all 9 studies. We provided functional genomic validation for newly identified significant loci by silencing candidate genes in a human liver cell line (HuH7) using small-interfering RNA and then measuring F7 messenger RNA and FVII protein expression. Lastly, we used meta-analysis results to perform Mendelian randomization analysis to estimate the causal effect of FVII activity on coronary artery disease, ischemic stroke (IS), and venous thromboembolism. We identified 2 novel (REEP3 and JAZF1-AS1) and 6 known loci associated with FVII activity, explaining 19.0% of the phenotypic variance. Adding FVII antigen data to the meta-analysis did not result in the discovery of further loci. Silencing REEP3 in HuH7 cells upregulated FVII, whereas silencing JAZF1 downregulated FVII. Mendelian randomization analyses suggest that FVII activity has a positive causal effect on the risk of IS. Variants at REEP3 and JAZF1 contribute to FVII activity by regulating F7 expression levels. FVII activity appears to contribute to the etiology of IS in the general population.

7.
Am J Hum Genet ; 104(2): 260-274, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639324

RESUMO

With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.

8.
Hum Genet ; 138(2): 199-210, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30671673

RESUMO

In this study, we investigated low-frequency and rare variants associated with blood pressure (BP) by focusing on a linkage region on chromosome 16p13. We used whole genome sequencing (WGS) data obtained through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program on 395 Cleveland Family Study (CFS) European Americans (CFS-EA). By analyzing functional coding variants and non-coding rare variants with CADD score > 10 residing within the chromosomal region in families with linkage evidence, we observed 25 genes with nominal statistical evidence (burden or SKAT p < 0.05). One of the genes is RBFOX1, an evolutionarily conserved RNA-binding protein that regulates tissue-specific alternative splicing that we previously reported to be associated with BP using exome array data in CFS. After follow-up analysis of the 25 genes in ten independent TOPMed studies with individuals of European, African, and East Asian ancestry, and Hispanics (N = 29,988), we identified variants in SLX4 (p = 2.19 × 10-4) to be significantly associated with BP traits when accounting for multiple testing. We also replicated the associations previously reported for RBFOX1 (p = 0.007). Follow-up analysis with GTEx eQTL data shows SLX4 variants are associated with gene expression in coronary artery, multiple brain tissues, and right atrial appendage of the heart. Our study demonstrates that linkage analysis of family data can provide an efficient approach for detecting rare variants associated with complex traits in WGS data.


Assuntos
Pressão Sanguínea/genética , Cromossomos Humanos Par 16/genética , Exoma , Ligação Genética , Variação Genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Processamento Alternativo/genética , Feminino , Seguimentos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fatores de Processamento de RNA/genética , Recombinases/genética
9.
Hum Mol Genet ; 28(7): 1212-1224, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624610

RESUMO

Interpretation of genetic association results is difficult because signals often lack biological context. To generate hypotheses of the functional genetic etiology of complex cardiometabolic traits, we estimated the genetically determined component of gene expression from common variants using PrediXcan (1) and determined genes with differential predicted expression by trait. PrediXcan imputes tissue-specific expression levels from genetic variation using variant-level effect on gene expression in transcriptome data. To explore the value of imputed genetically regulated gene expression (GReX) models across different ancestral populations, we evaluated imputed expression levels for predictive accuracy genome-wide in RNA sequence data in samples drawn from European-ancestry and African-ancestry populations and identified substantial predictive power using European-derived models in a non-European target population. We then tested the association of GReX on 15 cardiometabolic traits including blood lipid levels, body mass index, height, blood pressure, fasting glucose and insulin, RR interval, fibrinogen level, factor VII level and white blood cell and platelet counts in 15 755 individuals across three ancestry groups, resulting in 20 novel gene-phenotype associations reaching experiment-wide significance across ancestries. In addition, we identified 18 significant novel gene-phenotype associations in our ancestry-specific analyses. Top associations were assessed for additional support via query of S-PrediXcan (2) results derived from publicly available genome-wide association studies summary data. Collectively, these findings illustrate the utility of transcriptome-based imputation models for discovery of cardiometabolic effect genes in a diverse dataset.


Assuntos
Previsões/métodos , Metaboloma/genética , Metaboloma/fisiologia , Adulto , Idoso , Pressão Sanguínea , Índice de Massa Corporal , Mapeamento Cromossômico/métodos , Grupos Étnicos/genética , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
10.
Medicine (Baltimore) ; 97(33): e11865, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30113482

RESUMO

Rare variants, in particular renal salt handling genes, contribute to monogenic forms of hypertension and hypotension syndromes with electrolyte abnormalities. A study by Ji et al (2008) demonstrated this effect for rare loss-of-function coding variants in SLC12A3 (NCCT), SLC12A1 (NKCC2), and KCNJ1 (ROMK) that led to reduction of ∼6 mm Hg for SBP and ∼3 mm Hg for DBP among carriers in 2492 European ancestry Framingham Heart Study (FHS) subjects. These findings support a potentially large role for these variants in interindividual variation in systolic and diastolic blood pressure (SBP, DBP) in the population. The present study focuses on replicating the analyses completed by Ji et al to identify effects of rare variants in the population-based Atherosclerosis Risk in Communities (ARIC) study.We attempted to replicate the findings by Ji et al by applying their criteria to identify putative loss-of-function variants with allele frequency <0.001 and complete conservation across a set of orthologs, to exome sequencing data from 7444 European ancestry participants of the ARIC study.Although we failed to replicate the previous findings when applying their methods to the ARIC study data, we observed a similar effect when we restricted analyses to the subset of variants they observed.These results simultaneously support the utility of exome sequencing data for studying extremely rare coding variants in hypertension and underscore the need for improved filtering methods for identifying functional variants in human sequences.


Assuntos
Hipertensão/genética , Hipotensão/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Membro 1 da Família 12 de Carreador de Soluto/genética , Grupo com Ancestrais do Continente Africano/genética , Pressão Sanguínea/genética , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Reprodutibilidade dos Testes , Fatores de Risco , Membro 3 da Família 12 de Carreador de Soluto/genética , Sequenciamento Completo do Exoma
11.
Toxicol Appl Pharmacol ; 356: 44-53, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031762

RESUMO

Anthracyclines, such as doxorubicin, are highly effective chemotherapeutic agents, yet are associated with increased risk of cardiotoxicity. The genes and pathways involved in the development of heart damage following doxorubicin exposure in humans remain elusive. Our objective was to explore time- and dose-dependent changes in gene expression via RNA sequence (RNAseq) that mediate doxorubicin response in human iPSC-cardiomyocytes following 50, 150, or 450 nM exposure for 2, 7, or 12 days. Clustering and differential expression analyses were conducted to identify genes with altered expression. Samples clustered in dose and time-dependent manners, and MCM5, PRC1, NUSAP1, CENPF, CCNB1, MELK, AURKB, and RACGAP1 were consistently significantly differentially expressed between untreated and treated conditions. These genes were also significantly downregulated in pairwise analyses, which was validated by reverse transcription polymerase chain reaction (RT-PCR). Pathway analysis identified the top canonical pathways involved in response, implicating DNA damage repair response and the cell cycle as having roles in the development of doxorubicin-induced cardiotoxicity in the human cardiomyocyte.

13.
Nat Commun ; 9(1): 2536, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959320

RESUMO

We have been alerted that in our recent Article the calculations used to transform the heritability from the observed scale to the liability scale did not take into account the individuals in category 2 of the baldness scale, who were removed in our original analysis. This led to an overestimation of the heritability on the liability scale, which should have been 0.62 instead of 0.94. Moreover, in the Title and in the Abstract, we report that we can explain 38% of the risk, while in fact that is the proportion of heritability explained by the loci we discovered. These errors do not substantially change the paper or its conclusions apart from the statement MBP is therefore probably one of the most heritable complex traits. Genome-wide significant associations and pathway analyses are not affected in any way and male-pattern baldness remains less genetically complex than other complex traits. We wish to thank Yap et al. for bringing this to our attention.

14.
Blood ; 132(17): 1842-1850, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30042098

RESUMO

Many hemostatic factors are associated with age and age-related diseases; however, much remains unknown about the biological mechanisms linking aging and hemostatic factors. DNA methylation is a novel means by which to assess epigenetic aging, which is a measure of age and the aging processes as determined by altered epigenetic states. We used a meta-analysis approach to examine the association between measures of epigenetic aging and hemostatic factors, as well as a clotting time measure. For fibrinogen, we performed European and African ancestry-specific meta-analyses which were then combined via a random effects meta-analysis. For all other measures we could not estimate ancestry-specific effects and used a single fixed effects meta-analysis. We found that 1-year higher extrinsic epigenetic age as compared with chronological age was associated with higher fibrinogen (0.004 g/L/y; 95% confidence interval, 0.001-0.007; P = .01) and plasminogen activator inhibitor 1 (PAI-1; 0.13 U/mL/y; 95% confidence interval, 0.07-0.20; P = 6.6 × 10-5) concentrations, as well as lower activated partial thromboplastin time, a measure of clotting time. We replicated PAI-1 associations using an independent cohort. To further elucidate potential functional mechanisms, we associated epigenetic aging with expression levels of the PAI-1 protein encoding gene (SERPINE1) and the 3 fibrinogen subunit-encoding genes (FGA, FGG, and FGB) in both peripheral blood and aorta intima-media samples. We observed associations between accelerated epigenetic aging and transcription of FGG in both tissues. Collectively, our results indicate that accelerated epigenetic aging is associated with a procoagulation hemostatic profile, and that epigenetic aging may regulate hemostasis in part via gene transcription.

16.
Circ Genom Precis Med ; 11(5): e001663, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29752399

RESUMO

BACKGROUND: Genetic variants at the SCN5A/SCN10A locus are strongly associated with electrocardiographic PR and QRS intervals. While SCN5A is the canonical cardiac sodium channel gene, the role of SCN10A in cardiac conduction is less well characterized. METHODS: We sequenced the SCN10A locus in 3699 European-ancestry individuals to identify variants associated with cardiac conduction, and replicated our findings in 21,000 individuals of European ancestry. We examined association with expression in human atrial tissue. We explored the biophysical effect of variation on channel function using cellular electrophysiology. RESULTS: We identified 2 intronic single nucleotide polymorphisms in high linkage disequilibrium (r 2=0.86) with each other to be the strongest signals for PR (rs10428132, ß=-4.74, P=1.52×10-14) and QRS intervals (rs6599251, QRS ß=-0.73; P=1.2×10-4), respectively. Although these variants were not associated with SCN5A or SCN10A expression in human atrial tissue (n=490), they were in high linkage disequilibrium (r 2≥0.72) with a common SCN10A missense variant, rs6795970 (V1073A). In total, we identified 7 missense variants, 4 of which (I962V, P1045T, V1073A, and L1092P) were associated with cardiac conduction. These 4 missense variants cluster in the cytoplasmic linker of the second and third domains of the SCN10A protein and together form 6 common haplotypes. Using cellular electrophysiology, we found that haplotypes associated with shorter PR intervals had a significantly larger percentage of late current compared with wild-type (I962V+V1073A+L1092P, 20.2±3.3%, P=0.03, and I962V+V1073A, 22.4±0.8%, P=0.0004 versus wild-type 11.7±1.6%), and the haplotype associated with the longest PR interval had a significantly smaller late current percentage (P1045T, 6.4±1.2%, P=0.03). CONCLUSIONS: Our findings suggest an association between genetic variation in SCN10A, the late sodium current, and alterations in cardiac conduction.

17.
Genetics ; 209(2): 607-616, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29610217

RESUMO

Small molecule lipid-related metabolites are important components of fatty acid and steroid metabolism-two important contributors to human health. This study investigated the extent to which rare and common genetic variants spanning the human genome influence the lipid-related metabolome. Sequence data from 1552 European-Americans (EA) and 1872 African-Americans (AA) were analyzed to examine the impact of common and rare variants on the levels of 102 circulating lipid-related metabolites measured by a combination of chromatography and mass spectroscopy. We conducted single variant tests [minor allele frequency (MAF) > 5%, statistical significance P-value ≤ 2.45 × 10-10] and tests aggregating rare variants (MAF ≤ 5%) across multiple genomic motifs, such as coding regions and regulatory domains, and sliding windows. Multiethnic meta-analyses detected 53 lipid-related metabolites-locus pairs, which were inspected for evidence of consistent signal between the two ethnic groups. Thirty-eight lipid-related metabolite-genomic region associations were consistent across ethnicities, among which seven were novel. The regions contain genes that are related to metabolite transport (SLC10A1) and metabolism (SCD, FDX1, UGT2B15, and FADS2). Six of the seven novel findings lie in expression quantitative trait loci affecting the expression levels of 14 surrounding genes in multiple tissues. Imputed expression levels of 10 of the affected genes were associated with four corresponding lipid-related traits in at least one tissue. Our findings offer valuable insight into circulating lipid-related metabolite regulation in a multiethnic population.


Assuntos
Afro-Americanos/genética , Grupo com Ancestrais do Continente Europeu/genética , Metabolismo dos Lipídeos/genética , Metaboloma , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas
18.
Circ Genom Precis Med ; 11(3): e001937, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555670

RESUMO

BACKGROUND: DNA methylation-based patterns of biological aging, known as epigenetic age acceleration, are predictive of all-cause mortality, but little is known about their association with cardiovascular disease (CVD). METHODS: We estimated 2 versions of epigenetic age acceleration (Horvath and Hannum) using whole-blood samples from 2543 blacks. Linear and Cox proportional hazards regression, respectively, were used to assess the association of age acceleration with carotid intima-media thickness (cross-sectionally) and incident cardiovascular events, including CVD mortality, myocardial infarction, fatal coronary heart disease, peripheral arterial disease, and heart failure, during a median 21-year follow-up. All models were adjusted for chronological age and traditional CVD risk factors. RESULTS: In comparison to chronological age, the 2 measures of epigenetic age acceleration were weaker, but independent, potential risk markers for subclinical atherosclerosis and most incident cardiovascular outcomes, including fatal coronary heart disease, peripheral arterial disease, and heart failure. For example, each 5-year increment of epigenetic age acceleration was associated with an average of 0.01 mm greater carotid intima-media thickness (each P≤0.01), and the hazard ratios (95% confidence intervals) of fatal coronary heart disease per 5-year increment in Horvath and Hannum age acceleration were 1.17 (1.02-1.33) and 1.22 (1.04-1.44), respectively. CONCLUSIONS: In this sample of blacks, increased epigenetic age acceleration in whole blood was a potential risk marker for incident fatal coronary heart disease, peripheral arterial disease, and heart failure independently of chronological age and traditional CVD risk factors. DNA methylation-based measures of biological aging may help to identify new pathophysiological mechanisms contributing to the development of CVD.

19.
J Clin Invest ; 128(3): 1106-1124, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457790

RESUMO

Intake of hemoglobin by the hemoglobin-haptoglobin receptor CD163 leads to a distinct alternative non-foam cell antiinflammatory macrophage phenotype that was previously considered atheroprotective. Here, we reveal an unexpected but important pathogenic role for these macrophages in atherosclerosis. Using human atherosclerotic samples, cultured cells, and a mouse model of advanced atherosclerosis, we investigated the role of intraplaque hemorrhage on macrophage function with respect to angiogenesis, vascular permeability, inflammation, and plaque progression. In human atherosclerotic lesions, CD163+ macrophages were associated with plaque progression, microvascularity, and a high level of HIF1α and VEGF-A expression. We observed irregular vascular endothelial cadherin in intraplaque microvessels surrounded by CD163+ macrophages. Within these cells, activation of HIF1α via inhibition of prolyl hydroxylases promoted VEGF-mediated increases in intraplaque angiogenesis, vascular permeability, and inflammatory cell recruitment. CD163+ macrophages increased intraplaque endothelial VCAM expression and plaque inflammation. Subjects with homozygous minor alleles of the SNP rs7136716 had elevated microvessel density, increased expression of CD163 in ruptured coronary plaques, and a higher risk of myocardial infarction and coronary heart disease in population cohorts. Thus, our findings highlight a nonlipid-driven mechanism by which alternative macrophages promote plaque angiogenesis, leakiness, inflammation, and progression via the CD163/HIF1α/VEGF-A pathway.

20.
Biol Res Nurs ; 20(2): 168-176, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298497

RESUMO

Depressive symptoms independently contribute to major adverse coronary events (MACEs), with the biological immune response to depression being a likely mediator of this relationship. To determine whether genetic- and/or gender-specific phenotypic differences contribute to associations among depressive symptoms, inflammatory response, and risk of MACE in patients with acute coronary syndrome (ACS), we conducted a prospective study of 1,117 ACS patients to test a gender-specific model in which depressive symptoms (Beck Depression Inventory-II [BDI-II]) are associated with risk of MACE. Cox proportional hazards models were used to model time to incident MACE and determine whether single-nucleotide polymorphisms (SNPs) in specific inflammatory protein-coding genes and depressive symptoms interact to influence levels of inflammatory proteins or risk of MACE. Females had significantly higher high-sensitivity C-reactive protein and monocyte chemoattractant protein-1 levels. Depression status differed by gender (29.9% of females and 21.1% of males had BDI-II scores indicative of depression [ p = .0014]). Depressive symptoms were associated with MACE; however, the interaction between these symptoms and gender was not significant. SNPs and depressive symptoms did not interact to influence inflammation or MACE. More females than males had BDI-II scores indicative of depression, yet the association between positive depressive symptom status and MACE did not vary by gender. Nor did the SNPs interact with depressive symptoms to influence inflammation or MACE. It remains of interest to identify a high-risk subgroup of ACS patients with genetic polymorphisms that result in immunoinflammatory dysregulation in the presence of depressive symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA