Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 138(21): 2093-2105, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34125889

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased risk of cancers and inflammation-related diseases. This phenomenon becomes common in persons aged ≥80 years, in whom the implications of CHIP are not well defined. We performed a mutational screening in 1794 persons aged ≥80 years and investigated the relationships between CHIP and associated pathologies. Mutations were observed in one-third of persons aged ≥80 years and were associated with reduced survival. Mutations in JAK2 and splicing genes, multiple mutations (DNMT3A, TET2, and ASXL1 with additional genetic lesions), and variant allele frequency ≥0.096 had positive predictive value for myeloid neoplasms. Combining mutation profiles with abnormalities in red blood cell indices improved the ability of myeloid neoplasm prediction. On this basis, we defined a predictive model that identifies 3 risk groups with different probabilities of developing myeloid neoplasms. Mutations in DNMT3A, TET2, ASXL1, or JAK2 were associated with coronary heart disease and rheumatoid arthritis. Cytopenia was common in persons aged ≥80 years, with the underlying cause remaining unexplained in 30% of cases. Among individuals with unexplained cytopenia, the presence of highly specific mutation patterns was associated with myelodysplastic-like phenotype and a probability of survival comparable to that of myeloid neoplasms. Accordingly, 7.5% of subjects aged ≥80 years with cytopenia had presumptive evidence of myeloid neoplasm. In summary, specific mutational patterns define different risk of developing myeloid neoplasms vs inflammatory-associated diseases in persons aged ≥80 years. In individuals with unexplained cytopenia, mutational status may identify those subjects with presumptive evidence of myeloid neoplasms.

2.
Brief Bioinform ; 22(6)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010955

RESUMO

The complex web of macromolecular interactions occurring within cells-the interactome-is the backbone of an increasing number of studies, but a clear consensus on the exact structure of this network is still lacking. Different genome-scale maps of human interactome have been obtained through several experimental techniques and functional analyses. Moreover, these maps can be enriched through literature-mining approaches, and different combinations of various 'source' databases have been used in the literature. It is therefore unclear to which extent the various interactomes yield similar results when used in the context of interactome-based approaches in network biology. We compared a comprehensive list of human interactomes on the basis of topology, protein complexes, molecular pathways, pathway cross-talk and disease gene prediction. In a general context of relevant heterogeneity, our study provides a series of qualitative and quantitative parameters that describe the state of the art of human interactomes and guidelines for selecting interactomes in future applications.

3.
Cancer Biol Med ; 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037347

RESUMO

OBJECTIVE: Significant efforts are currently being made to identify novel biomarkers for the diagnosis and risk stratification of prostate cancer (PCa). Metabolomics can be a very useful approach in biomarker discovery because metabolites are an important read-out of the disease when characterized in biological samples. We aimed to determine a metabolomic signature which can accurately distinguish men with clinically significant PCa from those affected by benign prostatic hyperplasia (BPH). METHODS: We first performed untargeted metabolomics using ultrahigh-performance liquid chromatography tandem mass spectrometry on expressed prostatic secretion urine (EPS-urine) from 25 patients affected by BPH and 25 men with clinically significant PCa (defined as Gleason score ≥ 3 + 4). Diagnosis was histologically confirmed after surgical treatment. The EPS-urine metabolomic approach was then applied to a larger, prospective cohort of 92 consecutive patients undergoing multiparametric magnetic resonance imaging for clinical suspicion of PCa prior to biopsy. RESULTS: We established a novel metabolomic signature capable of accurately distinguishing PCa from benign tissue. A metabolomic signature was associated with clinically significant PCa in all subgroups of the Prostate Imaging Reporting and Data System (PI-RADS) classification (100% and 89.13% of accuracy when the PI-RADS was in range of 1-2 and 4-5, respectively, and 87.50% in the more critical cases when the PI-RADS was 3). CONCLUSIONS: A combination of metabolites and clinical variables can effectively help in identifying PCa patients that might be overlooked by current imaging technologies. Metabolites from EPS-urine should help in defining the diagnostic pathway of PCa, thus improving PCa detection and decreasing the number of unnecessary prostate biopsies.

4.
Sci Rep ; 11(1): 8339, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863921

RESUMO

The amyloidoses constitute a group of diseases occurring in humans and animals that are characterized by abnormal deposits of aggregated proteins in organs, affecting their structure and function. In the Abyssinian cat breed, a familial form of renal amyloidosis has been described. In this study, multi-omics analyses were applied and integrated to explore some aspects of the unknown pathogenetic processes in cats. Whole-genome sequences of two affected Abyssinians and 195 controls of other breeds (part of the 99 Lives initiative) were screened to prioritize potential disease-associated variants. Proteome and miRNAome from formalin-fixed paraffin-embedded kidney specimens of fully necropsied Abyssinian cats, three affected and three non-amyloidosis-affected were characterized. While the trigger of the disorder remains unclear, overall, (i) 35,960 genomic variants were detected; (ii) 215 and 56 proteins were identified as exclusive or overexpressed in the affected and control kidneys, respectively; (iii) 60 miRNAs were differentially expressed, 20 of which are newly described. With omics data integration, the general conclusions are: (i) the familial amyloid renal form in Abyssinians is not a simple monogenic trait; (ii) amyloid deposition is not triggered by mutated amyloidogenic proteins but is a mix of proteins codified by wild-type genes; (iii) the form is biochemically classifiable as AA amyloidosis.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Amiloidose Familiar/genética , Amiloidose Familiar/veterinária , Doenças do Gato/genética , Doenças do Gato/metabolismo , Gatos/genética , Gatos/metabolismo , Nefropatias/genética , Nefropatias/veterinária , Rim/metabolismo , Amiloidose Familiar/metabolismo , Animais , Variação Genética/genética , Nefropatias/metabolismo , MicroRNAs , Proteômica , Sequenciamento Completo do Genoma
5.
J Clin Oncol ; 39(11): 1223-1233, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539200

RESUMO

PURPOSE: Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication. METHODS: We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet processes, we combined mutations in 47 genes with cytogenetic abnormalities to identify genetic associations and subgroups. Random-effects Cox proportional hazards multistate modeling was used for developing prognostic models. An independent validation on 318 cases was performed. RESULTS: We identify eight MDS groups (clusters) according to specific genomic features. In five groups, dominant genomic features include splicing gene mutations (SF3B1, SRSF2, and U2AF1) that occur early in disease history, determine specific phenotypes, and drive disease evolution. These groups display different prognosis (groups with SF3B1 mutations being associated with better survival). Specific co-mutation patterns account for clinical heterogeneity within SF3B1- and SRSF2-related MDS. MDS with complex karyotype and/or TP53 gene abnormalities and MDS with acute leukemia-like mutations show poorest prognosis. MDS with 5q deletion are clustered into two distinct groups according to the number of mutated genes and/or presence of TP53 mutations. By integrating 63 clinical and genomic variables, we define a novel prognostic model that generates personally tailored predictions of survival. The predicted and observed outcomes correlate well in internal cross-validation and in an independent external cohort. This model substantially improves predictive accuracy of currently available prognostic tools. We have created a Web portal that allows outcome predictions to be generated for user-defined constellations of genomic and clinical features. CONCLUSION: Genomic landscape in MDS reveals distinct subgroups associated with specific clinical features and discrete patterns of evolution, providing a proof of concept for next-generation disease classification and prognosis.


Assuntos
Genômica/métodos , Síndromes Mielodisplásicas/classificação , Feminino , Humanos , Masculino , Síndromes Mielodisplásicas/genética , Prognóstico , Estudos Retrospectivos
6.
Front Immunol ; 11: 1426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754155

RESUMO

Monocytes and macrophages have a central role in all phases of an inflammatory reaction. To understanding the regulation of monocyte activation during a physiological or pathological inflammation, we propose two in vitro models that recapitulate the different phases of the reaction (recruitment, initiation, development, and resolution vs. persistence of inflammation), based on human primary blood monocytes exposed to sequential modifications of microenvironmental conditions. These models exclusively describe the functional development of blood-derived monocytes that first enter an inflammatory site. All reaction phases were profiled by RNA-Seq, and the two models were validated by studying the modulation of IL-1 family members. Genes were differentially modulated, and distinct clusters were identified during the various phases of inflammation. Pathway analysis revealed that both models were enriched in pathways involved in innate immune activation. We observe that monocytes acquire an M1-like profile during early inflammation, and switch to a deactivated M2-like profile during both the resolving and persistent phases. However, during persistent inflammation they partially maintain an M1 profile, although they lose the ability to produce inflammatory cytokines compared to M1 cells. The production of IL-1 family molecules by ELISA reflected the transcriptomic profiles in the distinct phases of the two inflammatory reactions. Based on the results, we hypothesize that persistence of inflammatory stimuli cannot maintain the M1 activated phenotype of incoming monocytes for long, suggesting that the persistent presence of M1 cells and effects in a chronically inflamed tissue is mainly due to activation of newly incoming cells. Moreover, being IL-1 family molecules mainly expressed and secreted by monocytes during the early stages of the inflammatory response (within 4-14 h), and the rate of their production decreasing during the late phase of both resolving and persistent inflammation, we suppose that IL-1 factors are key regulators of the acute defensive innate inflammatory reaction that precedes establishment of longer-term adaptive immunity, and are mainly related to the presence of recently recruited blood monocytes. The well-described role of IL-1 family cytokines and receptors in chronic inflammation is therefore most likely dependent on the continuous influx of blood monocytes into a chronically inflamed site.


Assuntos
Diferenciação Celular/imunologia , Inflamação/imunologia , Interleucina-1/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Humanos , Técnicas In Vitro
7.
Sci Rep ; 10(1): 7758, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385356

RESUMO

Gene-environment interactions, by means of abnormal macromolecular intestinal adsorption, is one of the possible causes of autism spectrum disorders (ASD) predominantly in patients with gastrointestinal disorders. Pre-haptoglobin-2 (zonulin), encoded by the Haptoglobin (HP) allele-2 gene, enhances the intestinal permeability by modulation of intercellular tight junctions. The two alleles of HP, HP1 and HP2, differ for 2 extra exons in HP2 that result in exon duplication undetectable by classic genome-wide association studies. To evaluate the role of HP2 in ASD pathogenesis and to set up a method to discriminate HP alleles, Italian subjects with ASD (n = 398) and healthy controls (n = 379) were genotyped by PCR analysis; subsequently, the PCR results were integrated with microarray genotypes (Illumina Human Omni 1S-8), obtained using a subset from the same subjects, and then we developed a computational method to predict HP alleles. On the contrary to our expectations, there was no association between HP2 and ASD (P > 0.05), and there was no significant allele association in subjects with ASD with or without gastrointestinal disorders (P > 0.05). With the aid of bioinformatics analysis, from a window frame of ~2 Mb containing 314 SNPs, we obtain imputation accuracy (r2) between 0.4 and 0.9 (median 0.7) and correct predictions were between 70% and 100% (median 90%). The conclusions endorse that enhanced intestinal permeability in subjects with ASD should not be imputed to HP2 but to other members of the zonulin family and/or to environmental factors.


Assuntos
Alelos , Transtorno do Espectro Autista/genética , Haptoglobinas/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Haplótipos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
8.
Front Genet ; 11: 106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180795

RESUMO

The development of integrative methods is one of the main challenges in bioinformatics. Network-based methods for the analysis of multiple gene-centered datasets take into account known and/or inferred relations between genes. In the last decades, the mathematical machinery of network diffusion-also referred to as network propagation-has been exploited in several network-based pipelines, thanks to its ability of amplifying association between genes that lie in network proximity. Indeed, network diffusion provides a quantitative estimation of network proximity between genes associated with one or more different data types, from simple binary vectors to real vectors. Therefore, this powerful data transformation method has also been increasingly used in integrative analyses of multiple collections of biological scores and/or one or more interaction networks. We present an overview of the state of the art of bioinformatics pipelines that use network diffusion processes for the integrative analysis of omics data. We discuss the fundamental ways in which network diffusion is exploited, open issues and potential developments in the field. Current trends suggest that network diffusion is a tool of broad utility in omics data analysis. It is reasonable to think that it will continue to be used and further refined as new data types arise (e.g. single cell datasets) and the identification of system-level patterns will be considered more and more important in omics data analysis.

9.
Sci Rep ; 10(1): 2643, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060296

RESUMO

In recent years complex networks have been identified as powerful mathematical frameworks for the adequate modeling of many applied problems in disparate research fields. Assuming a Master Equation (ME) modeling the exchange of information within the network, we set up a perturbative approach in order to investigate how node alterations impact on the network information flow. The main assumption of the perturbed ME (pME) model is that the simultaneous presence of multiple node alterations causes more or less intense network frailties depending on the specific features of the perturbation. In this perspective the collective behavior of a set of molecular alterations on a gene network is a particularly adapt scenario for a first application of the proposed method, since most diseases are neither related to a single mutation nor to an established set of molecular alterations. Therefore, after characterizing the method numerically, we applied as a proof of principle the pME approach to breast cancer (BC) somatic mutation data downloaded from Cancer Genome Atlas (TCGA) database. For each patient we measured the network frailness of over 90 significant subnetworks of the protein-protein interaction network, where each perturbation was defined by patient-specific somatic mutations. Interestingly the frailness measures depend on the position of the alterations on the gene network more than on their amount, unlike most traditional enrichment scores. In particular low-degree mutations play an important role in causing high frailness measures. The potential applicability of the proposed method is wide and suggests future development in the control theory context.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Mutação/genética , Apoptose/genética , Neoplasias da Mama/genética , Feminino , Humanos , Processos Estocásticos
10.
Bioinformatics ; 36(3): 865-871, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504182

RESUMO

MOTIVATION: Multi-omics approaches offer the opportunity to reconstruct a more complete picture of the molecular events associated with human diseases, but pose challenges in data analysis. Network-based methods for the analysis of multi-omics leverage the complex web of macromolecular interactions occurring within cells to extract significant patterns of molecular alterations. Existing network-based approaches typically address specific combinations of omics and are limited in terms of the number of layers that can be jointly analysed. In this study, we investigate the application of network diffusion to quantify gene relevance on the basis of multiple evidences (layers). RESULTS: We introduce a gene score (mND) that quantifies the relevance of a gene in a biological process taking into account the network proximity of the gene and its first neighbours to other altered genes. We show that mND has a better performance over existing methods in finding altered genes in network proximity in one or more layers. We also report good performances in recovering known cancer genes. The pipeline described in this article is broadly applicable, because it can handle different types of inputs: in addition to multi-omics datasets, datasets that are stratified in many classes (e.g., cell clusters emerging from single cell analyses) or a combination of the two scenarios. AVAILABILITY AND IMPLEMENTATION: The R package 'mND' is available at URL: https://www.itb.cnr.it/mnd. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Humanos
11.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323926

RESUMO

Current studies suggest that autism spectrum disorders (ASDs) may be caused by many genetic factors. In fact, collectively considering multiple studies aimed at characterizing the basic pathophysiology of ASDs, a large number of genes has been proposed. Addressing the problem of molecular data interpretation using gene networks helps to explain genetic heterogeneity in terms of shared pathways. Besides, the integrative analysis of multiple omics has emerged as an approach to provide a more comprehensive view of a disease. In this work, we carry out a network-based meta-analysis of the genes reported as associated with ASDs by studies that involved genomics, epigenomics, and transcriptomics. Collectively, our analysis provides a prioritization of the large number of genes proposed to be associated with ASDs, based on genes' relevance within the intracellular circuits, the strength of the supporting evidence of association with ASDs, and the number of different molecular alterations affecting genes. We discuss the presence of the prioritized genes in the SFARI (Simons Foundation Autism Research Initiative) database and in gene networks associated with ASDs by other investigations. Lastly, we provide the full results of our analyses to encourage further studies on common targets amenable to therapy.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Epigenômica/métodos , Genômica/métodos , Transcriptoma/genética , Biologia Computacional , Humanos
12.
BMC Bioinformatics ; 20(1): 107, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819096

RESUMO

BACKGROUND: Recent comparative studies have brought to our attention how somatic mutation detection from next-generation sequencing data is still an open issue in bioinformatics, because different pipelines result in a low consensus. In this context, it is suggested to integrate results from multiple calling tools, but this operation is not trivial and the burden of merging, comparing, filtering and explaining the results demands appropriate software. RESULTS: We developed isma (integrative somatic mutation analysis), an R package for the integrative analysis of somatic mutations detected by multiple pipelines for matched tumor-normal samples. The package provides a series of functions to quantify the consensus, estimate the variability, underline outliers, integrate evidences from publicly available mutation catalogues and filter sites. We illustrate the capabilities of isma analysing breast cancer somatic mutations generated by The Cancer Genome Atlas (TCGA) using four pipelines. CONCLUSIONS: Comparing different "points of view" on the same data, isma generates a unique mutation catalogue and a series of reports that underline common patterns, variability, as well as sites already catalogued by other studies (e.g. TCGA), so as to design and apply filtering strategies to screen more reliable sites. The package is available for non-commercial users at the URL https://www.itb.cnr.it/isma .


Assuntos
Análise Mutacional de DNA/métodos , Mutação/genética , Software , Biologia Computacional , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Interface Usuário-Computador
13.
Front Genet ; 8: 129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993790

RESUMO

Autism spectrum disorder (ASD) is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called "disease modules." In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists. We defined genome-scale prioritizations of human genes in relation to ASD genes from multiple studies, found significantly connected gene modules associated with ASD and predicted genes functionally related to ASD risk genes. Most of them play a role in synapsis and neuronal development and function; many are related to syndromes that can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle, cell adhesion and cancer.

14.
Sci Rep ; 6: 34841, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731320

RESUMO

A relation exists between network proximity of molecular entities in interaction networks, functional similarity and association with diseases. The identification of network regions associated with biological functions and pathologies is a major goal in systems biology. We describe a network diffusion-based pipeline for the interpretation of different types of omics in the context of molecular interaction networks. We introduce the network smoothing index, a network-based quantity that allows to jointly quantify the amount of omics information in genes and in their network neighbourhood, using network diffusion to define network proximity. The approach is applicable to both descriptive and inferential statistics calculated on omics data. We also show that network resampling, applied to gene lists ranked by quantities derived from the network smoothing index, indicates the presence of significantly connected genes. As a proof of principle, we identified gene modules enriched in somatic mutations and transcriptional variations observed in samples of prostate adenocarcinoma (PRAD). In line with the local hypothesis, network smoothing index and network resampling underlined the existence of a connected component of genes harbouring molecular alterations in PRAD.

15.
BMC Bioinformatics ; 17 Suppl 2: 15, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26821531

RESUMO

BACKGROUND: Methods for the integrative analysis of multi-omics data are required to draw a more complete and accurate picture of the dynamics of molecular systems. The complexity of biological systems, the technological limits, the large number of biological variables and the relatively low number of biological samples make the analysis of multi-omics datasets a non-trivial problem. RESULTS AND CONCLUSIONS: We review the most advanced strategies for integrating multi-omics datasets, focusing on mathematical and methodological aspects.


Assuntos
Genômica/métodos , Modelos Genéticos , Algoritmos , Teorema de Bayes , Humanos , Análise dos Mínimos Quadrados , Software
16.
BMC Bioinformatics ; 17 Suppl 2: 16, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26821617

RESUMO

BACKGROUND: Interest in understanding the mechanisms that lead to a particular composition of the Gut Microbiota is highly increasing, due to the relationship between this ecosystem and the host health state. Particularly relevant is the study of the Relative Species Abundance (RSA) distribution, that is a component of biodiversity and measures the number of species having a given number of individuals. It is the universal behaviour of RSA that induced many ecologists to look for theoretical explanations. In particular, a simple stochastic neutral model was proposed by Volkov et al. relying on population dynamics and was proved to fit the coral-reefs and rain forests RSA. Our aim is to ascertain if this model also describes the Microbiota RSA and if it can help in explaining the Microbiota plasticity. RESULTS: We analyzed 16S rRNA sequencing data sampled from the Microbiota of three different animal species by Jeraldo et al. Through a clustering procedure (UCLUST), we built the Operational Taxonomic Units. These correspond to bacterial species considered at a given phylogenetic level defined by the similarity threshold used in the clustering procedure. The RSAs, plotted in the form of Preston plot, were fitted with Volkov's model. The model fits well the Microbiota RSA, except in the tail region, that shows a deviation from the neutrality assumption. Looking at the model parameters we were able to discriminate between different animal species, giving also a biological explanation. Moreover, the biodiversity estimator obtained by Volkov's model also differentiates the animal species and is in good agreement with the first and second order Hill's numbers, that are common evenness indexes simply based on the fraction of individuals per species. CONCLUSIONS: We conclude that the neutrality assumption is a good approximation for the Microbiota dynamics and the observation that Volkov's model works for this ecosystem is a further proof of the RSA universality. Moreover, the ability to separate different animals with the model parameters and biodiversity number are promising results if we think about future applications on human data, in which the Microbiota composition and biodiversity are in close relationships with a variety of diseases and life-styles.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Bovinos/microbiologia , Galinhas/microbiologia , Microbioma Gastrointestinal , Sus scrofa/microbiologia , Animais , Bactérias/genética , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
17.
Brief Bioinform ; 17(3): 527-40, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26307062

RESUMO

Systems Medicine (SM) can be defined as an extension of Systems Biology (SB) to Clinical-Epidemiological disciplines through a shifting paradigm, starting from a cellular, toward a patient centered framework. According to this vision, the three pillars of SM are Biomedical hypotheses, experimental data, mainly achieved by Omics technologies and tailored computational, statistical and modeling tools. The three SM pillars are highly interconnected, and their balancing is crucial. Despite the great technological progresses producing huge amount of data (Big Data) and impressive computational facilities, the Bio-Medical hypotheses are still of primary importance. A paradigmatic example of unifying Bio-Medical theory is the concept of Inflammaging. This complex phenotype is involved in a large number of pathologies and patho-physiological processes such as aging, age-related diseases and cancer, all sharing a common inflammatory pathogenesis. This Biomedical hypothesis can be mapped into an ecological perspective capable to describe by quantitative and predictive models some experimentally observed features, such as microenvironment, niche partitioning and phenotype propagation. In this article we show how this idea can be supported by computational methods useful to successfully integrate, analyze and model large data sets, combining cross-sectional and longitudinal information on clinical, environmental and omics data of healthy subjects and patients to provide new multidimensional biomarkers capable of distinguishing between different pathological conditions, e.g. healthy versus unhealthy state, physiological versus pathological aging.


Assuntos
Inflamação , Análise de Sistemas , Biomarcadores , Estudos Transversais , Humanos , Neoplasias , Biologia de Sistemas
18.
PLoS One ; 9(12): e113660, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25461596

RESUMO

Hepatitis C virus infection is one of the most common and chronic in the world, and hepatitis associated with HCV infection is a major risk factor for the development of cirrhosis and hepatocellular carcinoma (HCC). The rapidly growing number of viral-host and host protein-protein interactions is enabling more and more reliable network-based analyses of viral infection supported by omics data. The study of molecular interaction networks helps to elucidate the mechanistic pathways linking HCV molecular activities and the host response that modulates the stepwise hepatocarcinogenic process from preneoplastic lesions (cirrhosis and dysplasia) to HCC. Simulating the impact of HCV-host molecular interactions throughout the host protein-protein interaction (PPI) network, we ranked the host proteins in relation to their network proximity to viral targets. We observed that the set of proteins in the neighborhood of HCV targets in the host interactome is enriched in key players of the host response to HCV infection. In opposition to HCV targets, subnetworks of proteins in network proximity to HCV targets are significantly enriched in proteins reported as differentially expressed in preneoplastic and neoplastic liver samples by two independent studies. Using multi-objective optimization, we extracted subnetworks that are simultaneously "guilt-by-association" with HCV proteins and enriched in proteins differentially expressed. These subnetworks contain established, recently proposed and novel candidate proteins for the regulation of the mechanisms of liver cells response to chronic HCV infection.


Assuntos
Redes Reguladoras de Genes , Hepacivirus/genética , Hepatite C/genética , Interações Hospedeiro-Patógeno/genética , Mapas de Interação de Proteínas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Regulação Viral da Expressão Gênica , Hepacivirus/metabolismo , Hepacivirus/patogenicidade , Hepatite C/patologia , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Proteínas Virais/biossíntese
19.
Biomed Res Int ; 2014: 980501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045716

RESUMO

There is an increasing awareness of the pivotal role of noise in biochemical processes and of the effect of molecular crowding on the dynamics of biochemical systems. This necessity has given rise to a strong need for suitable and sophisticated algorithms for the simulation of biological phenomena taking into account both spatial effects and noise. However, the high computational effort characterizing simulation approaches, coupled with the necessity to simulate the models several times to achieve statistically relevant information on the model behaviours, makes such kind of algorithms very time-consuming for studying real systems. So far, different parallelization approaches have been deployed to reduce the computational time required to simulate the temporal dynamics of biochemical systems using stochastic algorithms. In this work we discuss these aspects for the spatial TAU-leaping in crowded compartments (STAUCC) simulator, a voxel-based method for the stochastic simulation of reaction-diffusion processes which relies on the Sτ-DPP algorithm. In particular we present how the characteristics of the algorithm can be exploited for an effective parallelization on the present heterogeneous HPC architectures.


Assuntos
Algoritmos , Fenômenos Bioquímicos , Processos Estocásticos , Simulação por Computador , Difusão , Cinética , Modelos Biológicos , Ruído
20.
Mol Biosyst ; 9(12): 2971-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121459

RESUMO

Nowadays, computational and statistical methods focusing on integrated analysis of omics data are necessary. A few approaches have been recently described in the literature and a small number of software packages are available. We have developed a new method to generate networks of biological components that incorporate multi-omics information. The novelty of this method relies on using a multi-objective (MO) optimization procedure in order to drive the identification of networks that are enriched according to several statistical estimators. The network-based analysis of omics with MO optimization described in this work can be applied to different types of omics and biological interactions. By using this approach we found protein networks that participate in the establishment of the increased basal differentiation observed in breast tumors of BRCA1-mutation carriers. Additionally, we showed how MO optimization can be used to carry out a network-based comparison among several omic data sets: using transcriptomic data from two types of breast tumors and the corresponding epithelial cells from which tumors were generated, we found a protein network that shows a strong and coherent (the same direction) differential expression when comparing each tumor with its respective epithelial tissue. We have also compared the transcriptional variation detected in three different types of tumors originated in breast, colon and pancreas with the corresponding healthy tissues. Despite the global low correlation observed in the three pairs of tumors, we found more similar networks regulated in the same direction in colon and pancreas tumor cells. In conclusion, we propose the network-based analysis of omics with MO optimization as a valid tool for integrated analysis of omics data.


Assuntos
Redes Reguladoras de Genes , Genômica/métodos , Neoplasias/genética , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...