Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7669, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509778

RESUMO

Volatiles are vital ingredients for a habitable planet. Angrite meteorites sample the most volatile-depleted planetesimal in the Solar System, particularly for the alkali elements. They are prime targets for investigating the formation of volatile-poor rocky planets, yet their exceptionally low volatile content presents a major analytical challenge. Here, we leverage improved sensitivity and precision of K isotopic analysis to constrain the mechanism of extreme K depletion (>99.8%) in angrites. In contrast with the isotopically heavy Moon and Vesta, we find that angrites are strikingly depleted in the heavier K isotopes, which is best explained by partial recondensation of vaporized K following extensive evaporation on the angrite parent body (APB) during magma-ocean stage. Therefore, the APB may provide a rare example of isotope fractionation controlled by condensation, rather than evaporation, at a planetary scale. Furthermore, nebula-wide K isotopic variations primarily reflect volatility-driven fractionations instead of presolar nucleosynthetic heterogeneity proposed previously.


Assuntos
Meio Ambiente Extraterreno , Meteoroides , Sistema Solar , Planetas , Isótopos , Isótopos de Potássio
2.
Sci Adv ; 8(50): eade2067, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525483

RESUMO

The extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: 16O-rich (associated with refractory inclusions) and 16O-poor (associated with chondrules). Both the 16O-rich and 16O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward. The abundance ratios of the 16O-rich to 16O-poor minerals in Ryugu and CI chondrites are higher than in other carbonaceous chondrite groups but are similar to that of comet 81P/Wild2, suggesting that Ryugu and CI chondrites accreted in the outer Solar System closer to the accretion region of comets.

3.
Sci Adv ; 8(46): eabp8415, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383650

RESUMO

The terrestrial planets endured a phase of bombardment following their accretion, but the nature of this late accreted material is debated, preventing a full understanding of the origin of inner solar system volatiles. We report the discovery of nucleosynthetic chromium isotope variability (µ54Cr) in Martian meteorites that represent mantle-derived magmas intruded in the Martian crust. The µ54Cr variability, ranging from -33.1 ± 5.4 to +6.8 ± 1.5 parts per million, correlates with magma chemistry such that samples having assimilated crustal material define a positive µ54Cr endmember. This compositional endmember represents the primordial crust modified by impacting outer solar system bodies of carbonaceous composition. Late delivery of this volatile-rich material to Mars provided an exotic water inventory corresponding to a global water layer >300 meters deep, in addition to the primordial water reservoir from mantle outgassing. This carbonaceous material may also have delivered a source of biologically relevant molecules to early Mars.

4.
Metallomics ; 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36416864

RESUMO

Natural stable metal isotopes have shown utility in differentiation between healthy and diseased brain states (e.g. Alzheimer's disease, AD). While the AD brain accumulates some metals, it purges others, namely K (accompanied by increased serum K, suggesting brain-blood transferal). Here, K isotope compositions of Göttingen minipig brain regions for two AD models at mid-life are reported. Results indicate heavy K isotope enrichment where amyloid beta (Aß) accumulation is observed, and this enrichment correlates with relative K depletion. These results suggest preferential efflux of isotopically light K + from the brain, a linkage between brain K concentrations and isotope compositions, and linkage to Aß (previously shown to purge cellular brain K+). Brain K isotope compositions differ from that for serum and brain K is much more abundant than in serum, suggesting that changes in brain K may transfer a measurable K isotope excursion to serum, thereby generating an early AD biomarker.

5.
Sci Adv ; 8(46): eadd8141, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36264823

RESUMO

Little is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids. Growth and migration of the giant planets destabilized nearby planetesimals and ejected some inward to be implanted into the Main Belt. In this framework, most carbonaceous chondrites may have originated from regions around the birthplaces of Jupiter and Saturn, while the distinct isotopic composition of CI chondrites and Ryugu may reflect their formation further away in the disk, owing their presence in the inner Solar System to excitation by Uranus and Neptune.

6.
Science ; : eabn7850, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35679354

RESUMO

Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measure the mineralogy, bulk chemical and isotopic compositions of Ryugu samples. They are mainly composed of materials similar to carbonaceous chondrite meteorites, particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of 37 ± 10°C, [Formula: see text] (Stat.) [Formula: see text] (Syst.) million years after formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were likely never heated above ~100°C. The samples have a chemical composition that more closely resembles the Sun's photosphere than other natural samples do.

7.
Proc Natl Acad Sci U S A ; 119(12): e2120933119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290127

RESUMO

The formation and differentiation of planetary bodies are dated using radioactive decay systems, including the short-lived 146Sm-142Nd (T½ = 103 or 68 Ma) and long-lived 147Sm-143Nd (T½ = 106 Ga) radiogenic pairs that provide relative and absolute ages, respectively. However, the initial abundance and half-life of the extinct radioactive isotope 146Sm are still debated, weakening the interpretation of 146Sm-142Nd systematics obtained for early planetary processes. Here, we apply the short-lived 26Al-26Mg, 146Sm-142Nd, and long-lived 147Sm-143Sm chronometers to the oldest known andesitic meteorite, Erg Chech 002 (EC 002), to constrain the Solar System initial abundance of 146Sm. The 26Al-26Mg mineral isochron of EC 002 provides a tightly constrained initial δ26Mg* of −0.009 ± 0.005 ‰ and (26Al/27Al)0 of (8.89 ± 0.09) × 10−6. This initial abundance of 26Al is the highest measured so far in an achondrite and corresponds to a crystallization age of 1.80 ± 0.01 Myr after Solar System formation. The 146Sm-142Nd mineral isochron returns an initial 146Sm/144Sm ratio of 0.00830 ± 0.00032. By combining the Al-Mg crystallization age and initial 146Sm/144Sm ratio of EC 002 with values for refractory inclusions, achondrites, and lunar samples, the best-fit half-life for 146Sm is 102 ± 9 Ma, corresponding to the physically measured value of 103 ± 5 Myr, rather than the latest and lower revised value of 68 ± 7 Ma. Using a half-life of 103 Ma for 146Sm, the 146Sm/144Sm abundance of EC 002 translates into an initial Solar System 146Sm/144Sm ratio of 0.00840 ± 0.00032, which represents the most reliable and precise estimate to date and makes EC 002 an ideal anchor for the 146Sm-142Nd clock.

8.
Metallomics ; 14(5)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35294027

RESUMO

Copper (Cu) stable isotopes are useful for understanding pathways and tracing changes in Cu homeostasis, such as those induced by various diseases (e.g. liver cirrhosis, numerous forms of cancer, and neurodegenerative diseases). However, this utility relies on a baseline understanding of the natural distribution of Cu isotopes between organs of healthy organisms, which is not well-known at present. Here, the distribution of natural Cu isotopes in the brain, liver, red blood cells, plasma, kidneys, and muscle of 14 mice (7 males and 7 females) from three different genetic backgrounds is assessed. We show that the Cu isotopic composition of most mouse organs is isotopically distinct from one another. The most striking feature is the heavy isotope enrichment of the kidney (δ65Cu = 1.65 ± 0.06‰, 2SE), brain (δ65Cu = 0.87 ± 0.03‰, 2SE) and liver (δ65Cu = 0.71 ± 0.24‰, 2SE) compared to blood components, i.e. red blood cells (RBCs) (δ65Cu = 0.30 ± 0.06‰, 2SE), and plasma (δ65Cu = -0.61 ± 0.08‰, 2SE), with δ65Cu being the per mil deviation of the 65Cu/63Cu ratio from the NIST SRM 976 standard. Differences in genetic background do not appear to affect the isotopic distribution of Cu. Interestingly, male and female mice appear to have different Cu concentrations and isotopic compositions in their brain, plasma, muscle, and RBC. By demonstrating that organs have distinct isotopic compositions, our study reinforces the notion that Cu stable isotopes can be used to trace changes in homeostasis in diseases affecting Cu distribution, such as Alzheimer's disease, liver cancer, and possible chronic kidney failure.


Assuntos
Doença de Alzheimer , Cobre , Animais , Encéfalo/metabolismo , Cobre/metabolismo , Feminino , Isótopos/metabolismo , Masculino , Camundongos
9.
J Trace Elem Med Biol ; 71: 126967, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35259616

RESUMO

BACKGROUND: Copper is a metal that plays a central role in biology, for example, as co-factor in various redox enzymes. Its stable isotopic composition is being used as tracer of its transport in living organisms and as a biomarker for diseases affecting its homeostasis. While the application of copper stable isotopes to biological studies is a growing field, there are presently no biological standards that are systematically analyzed in the different laboratories, as it is the case for geological samples (e.g., by using widely available basalt samples). It is therefore paramount for the community to establish such standard. Copper also binds oxygen in the respiratory protein, hemocyanin, in the hemolymph of mollusks and arthropods and is thus critical to respiration for these species. METHODS: Here, the Cu isotope composition of hemocyanin of different modern species of mollusks and arthropods (Megathura crenulate Keyhole limpet, Limulus polyphemus Horseshoe crab and Concholepas concholepas Chilean abalone), as well as theoretical constraints on the origin of these isotopic fractionations through ab initio calculations are reported. RESULTS: The isotopic fractionation factors for Cu(I) and Cu(II), both in hemocyanin and in seawater, predict an enrichment in the lighter isotope of Cu in the hemocyanin by over 1 permil compared to seawater. The hemocyanin of Chilean abalone and Horseshoe crab have Cu isotope compositions (δ65Cu = +0.63 ± 0.04‰ and +0.61 ± 0.04‰, respectively, with δ65Cu the permil deviation of the 65Cu/63Cu ratio from the NIST SRM 976 standard), similar to that of the octopus reported in literature (+0.62‰), that are undistinguishable from seawater, suggesting quantitative Cu absorption for these organisms. Conversely, the Keyhole limpet is enriched in the lighter isotope of Cu, which is in line with the ab initio calculation and therefore Cu isotopic fractionation during incorporation of Cu into the hemocyanin. CONCLUSIONS: Because these hemocyanin standard samples are widely available, they could serve in the future as inter-laboratory standards to verify the accuracy of the Cu isotopic measurements on biological matrices.

10.
Earth Planets Space ; 73(1): 120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776735

RESUMO

Japan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX). Touchdown operations are planned to be performed twice at different landing sites on the Phobos surface to collect > 10 g of the Phobos surface materials with coring and pneumatic sampling systems on board. The Sample Analysis Working Team (SAWT) of MMX is now designing analytical protocols of the returned Phobos samples to shed light on the origin of the Martian moons as well as the evolution of the Mars-moon system. Observations of petrology and mineralogy, and measurements of bulk chemical compositions and stable isotopic ratios of, e.g., O, Cr, Ti, and Zn can provide crucial information about the origin of Phobos. If Phobos is a captured asteroid composed of primitive chondritic materials, as inferred from its reflectance spectra, geochemical data including the nature of organic matter as well as bulk H and N isotopic compositions characterize the volatile materials in the samples and constrain the type of the captured asteroid. Cosmogenic and solar wind components, most pronounced in noble gas isotopic compositions, can reveal surface processes on Phobos. Long- and short-lived radionuclide chronometry such as 53Mn-53Cr and 87Rb-87Sr systematics can date pivotal events like impacts, thermal metamorphism, and aqueous alteration on Phobos. It should be noted that the Phobos regolith is expected to contain a small amount of materials delivered from Mars, which may be physically and chemically different from any Martian meteorites in our collection and thus are particularly precious. The analysis plan will be designed to detect such Martian materials, if any, from the returned samples dominated by the endogenous Phobos materials in curation procedures at JAXA before they are processed for further analyses.

11.
Front Med (Lausanne) ; 8: 696367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746169

RESUMO

Iron isotopes are fractionated by multiple biological processes, which offers a novel opportunity to study iron homeostasis. The determination of Fe isotope composition in biological samples necessitates certified biological reference materials with known Fe isotopic signature in order to properly assess external reproducibility and data quality between laboratories. We report the most comprehensive study on the Fe isotopic composition for widely available international biological reference materials. They consist of different terrestrial and marine animal organs (bovine, porcine, tuna, and mussel) as well as apple leaves and human hair (ERC-CE464, NIST1515, ERM-DB001, ERM-BB186, ERM-BB184, ERM-CE196, BCR668, ERM-BB185, ERM-BB124). Previously measured Fe isotopic compositions were available for only two of these reference materials (ERC-CE464 tuna fish and ERM-BB186 pig kidney) and these literature data are in excellent agreement with our data. The Fe isotopic ratios are reported as the permil deviation of the 56Fe/54Fe ratio from the IRMM-014 standard. All reference materials present δ56Fe ranging from -2.27 to -0.35%0. Combined with existing data, our results suggest that animal models could provide useful analogues of the human body regarding the metabolic pathways affecting Fe isotopes, with many potential applications to medicine.

12.
Geochim Cosmochim Acta ; 301: 158-186, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34393262

RESUMO

Chondrites are meteorites from undifferentiated parent bodies that provide fundamental information about early Solar System evolution and planet formation. The element Cr is highly suitable for deciphering both the timing of formation and the origin of planetary building blocks because it records both radiogenic contributions from 53Mn-53Cr decay and variable nucleosynthetic contributions from the stable 54Cr nuclide. Here, we report high-precision measurements of the massindependent Cr isotope compositions (ε53Cr and ε54Cr) of chondrites (including all carbonaceous chondrites groups) and terrestrial samples using for the first time a multi-collection inductively-coupled-plasma mass-spectrometer to better understand the formation histories and genetic relationships between chondrite parent bodies. With our comprehensive dataset, the order of decreasing ε54Cr (per ten thousand deviation of the 54Cr/52Cr ratio relative to a terrestrial standard) values amongst the carbonaceous chondrites is updated to CI = CH ≥ CB ≥ CR ≥ CM ≈ CV ≈ CO ≥ CK > EC > OC. Chondrites from CO, CV, CR, CM and CB groups show intra-group ε54Cr heterogeneities that may result from sample heterogeneity and/or heterogeneous accretion of their parent bodies. Resolvable ε54Cr (with 2SE uncertainty) differences between CV and CK chondrites rule out an origin from a common parent body or reservoir as has previously been suggested. The CM and CO chondrites share common ε54Cr characteristics, which suggests their parent bodies may have accreted their components in similar proportions. The CB and CH chondrites have low-Mn/Cr ratios and similar ε53Cr values to the CI chondrites, invalidating them as anchors for a bulk 53Mn-53Cr isochron for carbonaceous chondrites. Bulk Earth has a ε53Cr value that is lower than the average of chondrites, including enstatite chondrites. This depletion may constrain the timing of volatile loss from the Earth or its precursors to be within the first million years of Solar System formation and is incompatible with Earth's accretion via any of the known chondrite groups as main contributors, including enstatite chondrites.

13.
Commun Earth Environ ; 2: 94, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34409303

RESUMO

Tektites are terrestrial impact-generated glasses that are ejected long distance (up to 11,000 km), share unique characteristics and have a poorly understood formation process. Only four tektite strewn-fields are known, and three of them are sourced from known impact craters. Here we show that the recently discovered Pantasma impact crater (14 km diameter) in Nicaragua is the source of an impact glass strewn-field documented in Belize 530 km away. Their cogenesis is documented by coincidental ages, at 804 ± 9 ka, as well as consistent elemental compositions and isotopic ratios. The Belize impact glass share many characteristics with known tektites but also present several peculiar features. We propose that these glasses represent a previously unrecognized tektite strewn-field. These discoveries shed new light on the tektite formation process, which may be more common than previously claimed, as most known Pleistocene >10 km diameter cratering events have generated tektites.

14.
Nat Commun ; 12(1): 2534, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953179

RESUMO

Continents are unique to Earth and played a role in coevolution of the atmosphere, hydrosphere, and biosphere. Debate exists, however, regarding continent formation and the onset of subduction-driven plate tectonics. We present Ca isotope and trace-element data from modern and ancient (4.0 to 2.8 Ga) granitoids and phase equilibrium models indicating that Ca isotope fractionations are dominantly controlled by geothermal gradients. The results require gradients of 500-750 °C/GPa, as found in modern (hot) subduction-zones and consistent with the operation of subduction throughout the Archaean. Two granitoids from the Nuvvuagittuq Supracrustal Belt, Canada, however, cannot be explained through magmatic processes. Their isotopic signatures were likely inherited from carbonate sediments. These samples (> 3.8 Ga) predate the oldest known carbonates preserved in the rock record and confirm that carbonate precipitation in Eoarchaean oceans provided an important sink for atmospheric CO2. Our results suggest that subduction-driven plate tectonic processes started prior to ~3.8 Ga.

15.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723067

RESUMO

Rocks from the lunar interior are depleted in moderately volatile elements (MVEs) compared to terrestrial rocks. Most MVEs are also enriched in their heavier isotopes compared to those in terrestrial rocks. Such elemental depletion and heavy isotope enrichments have been attributed to liquid-vapor exchange and vapor loss from the protolunar disk, incomplete accretion of MVEs during condensation of the Moon, and degassing of MVEs during lunar magma ocean crystallization. New Monte Carlo simulation results suggest that the lunar MVE depletion is consistent with evaporative loss at 1,670 ± 129 K and an oxygen fugacity +2.3 ± 2.1 log units above the fayalite-magnetite-quartz buffer. Here, we propose that these chemical and isotopic features could have resulted from the formation of the putative Procellarum basin early in the Moon's history, during which nearside magma ocean melts would have been exposed at the surface, allowing equilibration with any primitive atmosphere together with MVE loss and isotopic fractionation.

16.
Proc Natl Acad Sci U S A ; 117(49): 30973-30979, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33199613

RESUMO

Combining U-Pb ages with Lu-Hf data in zircon provides insights into the magmatic history of rocky planets. The Northwest Africa (NWA) 7034/7533 meteorites are samples of the southern highlands of Mars containing zircon with ages as old as 4476.3 ± 0.9 Ma, interpreted to reflect reworking of the primordial Martian crust by impacts. We extracted a statistically significant zircon population (n = 57) from NWA 7533 that defines a temporal record spanning 4.2 Gyr. Ancient zircons record ages from 4485.5 ± 2.2 Ma to 4331.0 ± 1.4 Ma, defining a bimodal distribution with groupings at 4474 ± 10 Ma and 4442 ± 17 Ma. We interpret these to represent intense bombardment episodes at the planet's surface, possibly triggered by the early migration of gas giant planets. The unradiogenic initial Hf-isotope composition of these zircons establishes that Mars's igneous activity prior to ∼4.3 Ga was limited to impact-related reworking of a chemically enriched, primordial crust. A group of younger detrital zircons record ages from 1548.0 ± 8.8 Ma to 299.5 ± 0.6 Ma. The only plausible sources for these grains are the temporally associated Elysium and Tharsis volcanic provinces that are the expressions of deep-seated mantle plumes. The chondritic-like Hf-isotope compositions of these zircons require the existence of a primitive and convecting mantle reservoir, indicating that Mars has been in a stagnant-lid tectonic regime for most of its history. Our results imply that zircon is ubiquitous on the Martian surface, providing a faithful record of the planet's magmatic history.

17.
Alzheimers Dement (Amst) ; 12(1): e12112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102682

RESUMO

Introduction: Alzheimer's disease (AD) is neuropathologically marked by amyloid beta (Aß) plaques and neurofibrillary tangles. Little is known about isotopic compositions of human AD brains. Here we study this in comparison with control subjects for copper and zinc. Methods: We use mass-spectrometry methods, developed to study extraterrestrial materials, to compare the copper and zinc isotopic composition of 10 AD and 10 control brains. Results: Copper and zinc natural isotopic compositions of AD brains are statistically different compared to controls, and correlate with Braak stages. Discussion: The distribution of natural copper and zinc isotopes in AD is not affected by the diet, but is a consequence of Aß plaques and tau fibril accumulation. This is well predicted by the changes of the chemical bonding environment caused by the development of Aß lesions and accumulation of tau proteins. Future work will involve testing whether these changes affect brain functions and are propagated to body fluids.

18.
Metallomics ; 12(10): 1585-1598, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33084720

RESUMO

Biometals play a critical role in both the healthy and diseased brain's functioning. They accumulate in the normal aging brain, and are inherent to neurodegenerative disorders and their associated pathologies. A prominent example of this is the brain accumulation of metals such as Ca, Fe and Cu (and more ambiguously, Zn) associated with Alzheimer's disease (AD). The natural stable isotope compositions of such metals have also shown utility in constraining biological mechanisms, and in differentiating between healthy and diseased states, sometimes prior to conventional methods. Here we have detailed the distribution of the biologically relevant elements Mg, P, K, Ca, Fe, Cu and Zn in brain regions of Göttingen minipigs ranging in age from three months to nearly six years, including control animals and both a single- and double-transgenic model of AD (PS1, APP/PS1). Moreover, we have characterized the Ca isotope composition of the brain for the first time. Concentration data track rises in brain biometals with age, namely for Fe and Cu, as observed in the normal ageing brain and in AD, and biometal data point to increased soluble amyloid beta (Aß) load prior to AD plaque identification via brain imaging. Calcium isotope results define the brain as the isotopically lightest permanent reservoir in the body, indicating that brain Ca dyshomeostasis may induce measurable isotopic disturbances in accessible downstream reservoirs such as biofluids.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Cálcio/metabolismo , Metais/metabolismo , Envelhecimento , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Ferro/metabolismo , Isótopos/metabolismo , Suínos , Porco Miniatura
19.
Sci Adv ; 6(44)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33127679

RESUMO

Despite the abundant geomorphological evidence for surface liquid water on Mars during the Noachian epoch (>3.7 billion years ago), attaining a warm climate to sustain liquid water on Mars at the period of the faint young Sun is a long-standing question. Here, we show that melts of ancient mafic clasts from a martian regolith meteorite, NWA 7533, experienced substantial Fe-Ti oxide fractionation. This implies early, impact-induced, oxidation events that increased by five to six orders of magnitude the oxygen fugacity of impact melts from remelting of the crust. Oxygen isotopic compositions of sequentially crystallized phases from the clasts show that progressive oxidation was due to interaction with an 17O-rich water reservoir. Such an early oxidation of the crust by impacts in the presence of water may have supplied greenhouse gas H2 that caused an increase in surface temperature in a CO2-thick atmosphere.

20.
Proc Natl Acad Sci U S A ; 117(35): 21125-21131, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817493

RESUMO

Zircons widely occur in magmatic rocks and often display internal zonation finely recording the magmatic history. Here, we presented in situ high-precision (2SD <0.15‰ for δ94Zr) and high-spatial-resolution (20 µm) stable Zr isotope compositions of magmatic zircons in a suite of calc-alkaline plutonic rocks from the juvenile part of the Gangdese arc, southern Tibet. These zircon grains are internally zoned with Zr isotopically light cores and increasingly heavier rims. Our data suggest the preferential incorporation of lighter Zr isotopes in zircon from the melt, which would drive the residual melt to heavier values. The Rayleigh distillation model can well explain the observed internal zoning in single zircon grains, and the best-fit models gave average zircon-melt fractionation factors for each sample ranging from 0.99955 to 0.99988. The average fractionation factors are positively correlated with the median Ti-in-zircon temperatures, indicating a strong temperature dependence of Zr isotopic fractionation. The results demonstrate that in situ Zr isotope analyses would be another powerful contribution to the geochemical toolbox related to zircon. The findings of this study solve the fundamental issue on how zircon fractionates Zr isotopes in calc-alkaline magmas, the major type of magmas that led to forming continental crust over time. The results also show the great potential of stable Zr isotopes in tracing magmatic thermal and chemical evolution and thus possibly continental crustal differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...