Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1404-1407, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018252

RESUMO

Diabetic retinopathy (DR) is a progressive eye disease that affects a large portion of working-age adults. DR, which may progress to an irreversible state that causes blindness, can be diagnosed with a comprehensive dilated eye exam. With the eye dilated, the Doctor takes pictures of the inside of the eye via a medical procedure called Fluorescein Angiography, in which a dye is injected into the bloodstream. The dye highlights the blood vessels in the back of the eye so they can be photographed. In addition, the Doctor may request an Optical Coherence Tomography (OCT) exam, by which cross-sectional photos of the retina are produced to measure the thickness of the retina. Early prognostication is vital in treating the disease and preventing it from progressing into advanced irreversible stages. Skilled medical personnel and necessary medical facilities are required to detect DR in its five major stages. In this paper, we propose a diagnostic tool to detect Diabetic retinopathy from fundus images by using an ensemble of multi-inception CNN networks. Our inception block consists of three Convolutional layers with kernel sizes of 3x3, 5x5, and 1x1 that are concatenated deeply and forwarded to the max-pooling layer. We experimentally compare our proposed method with two pre-trained models: VGG16 and GoogleNets. The experiment results show that the proposed method can achieve an accuracy of 93.2% by an ensemble of 10 random networks, compared to 81% obtained with transfer learning based on VGG19.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Estudos Transversais , Retinopatia Diabética/diagnóstico , Fundo de Olho , Humanos , Redes Neurais de Computação , Tomografia de Coerência Óptica
2.
Cancers (Basel) ; 11(3)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917548

RESUMO

Certain small noncoding microRNAs (miRNAs) are differentially expressed in normal tissues and cancers, which makes them great candidates for biomarkers for cancer. Previously, a selected subset of miRNAs has been experimentally verified to be linked to breast cancer. In this paper, we validated the importance of these miRNAs using a machine learning approach on miRNA expression data. We performed feature selection, using Information Gain (IG), Chi-Squared (CHI2) and Least Absolute Shrinkage and Selection Operation (LASSO), on the set of these relevant miRNAs to rank them by importance. We then performed cancer classification using these miRNAs as features using Random Forest (RF) and Support Vector Machine (SVM) classifiers. Our results demonstrated that the miRNAs ranked higher by our analysis had higher classifier performance. Performance becomes lower as the rank of the miRNA decreases, confirming that these miRNAs had different degrees of importance as biomarkers. Furthermore, we discovered that using a minimum of three miRNAs as biomarkers for breast cancers can be as effective as using the entire set of 1800 miRNAs. This work suggests that machine learning is a useful tool for functional studies of miRNAs for cancer detection and diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...