Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32578989

RESUMO

Reaction of the Cu(I) sources, [Cu5](Mes)5 and [(iDipp)CuOtBu] (Mes = mesityl; iDipp = 1,3-bis(2,6-diisopropylphenyl)-1H-imidazol-2-ylidene) with the Zn(I) complex [Zn2](Cp*)2 leads to a mixture of intermetallic Cu/Zn clusters with a distribution of species that is dependent on the stoichiometric ratio of the reactants, the reaction time, as well as the temperature. Systematic and careful investigation of the product mixtures rendered the isolation of two new clusters possible, i.e., the Zn-rich, red cluster 1, [CuZn10](Cp*)7 = [Cu(ZnZnCp*)3(ZnCp*)4], as well as the Cu-rich, dark-green cluster 2 [Cu10Zn2](Mes)6(Cp*)2. Structure and bonding of these two species was rationalized with the help of density functional theory calculations. Whereas 1 can be viewed as an 18-electron Cu center coordinated to four ZnCp* and three ZnZnCp* one-electron ligands (with some interligand bonding interaction), compound 2 is better to be described as a six-electron superatom cluster. This unusual electron count is associated with a prolate distortion from a spherical superatom structure. This unexpected situation is likely to be associated with the ZnCp* capping units that offer the possibility to strongly bind to the top and the bottom of the cluster in addition to the bridging mesityl ligands stabilizing the Cu core of the cluster.

2.
Inorg Chem ; 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32191447

RESUMO

The reactivity of GaCp* toward different Ni0 olefin complexes is investigated. The reaction of GaCp* with [Ni(cdt)] (cdt = all-trans-1,5,9-cyclododecatriene) leads to simple adduct formation and the 18 valence electron (ve) compound [Ni(GaCp*)(cdt)] (1). In contrast, [Ni2(dvds)3] (dvds = 1,1,3,3-tetramethyl-1,3-divinyldisiloxane) is converted to the undercoordinated and highly reactive 16 ve complex [Ni(GaCp*)(dvds)] (2), which represents an intermediate in the formation of the propeller-shaped M7 cluster [Ni4Ga3](Cp*)3(dvds)2 (3). Extensive characterization of the latter compound by experimental and computational means reveals the Cp* transfer from Ga to Ni. Therefore, the title compound can be best expressed by the structural formula [(µ2-GaCp*)(Ni2)(µ2-GaNiCp*)2(dvds)2]. The flexible dvds ligands stabilize this arrangement via alkene-Ni and O-Ga interactions. Furthermore, compound 2 exhibits a fast GaCp* ligand exchange with external GaCp*, which is rather unexpected for the [TM(ECp*)a] compounds; they usually do not undergo substitution reactions with two electron donor ligands like CO, phosphines, or GaCp*.

3.
Dalton Trans ; 48(31): 11743-11748, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31298254

RESUMO

A prospective connection between Hume-Rothery inspired TM/E (TM = transition metal; E = Al, Ga, Zn) complexes and clusters with the related solid-state intermetallic TM/E compounds is presented with respect to the industrially relevant catalytic semihydrogenation of acetylene. The theoretical study dealing with [Ni(ER)n(C2Hx)4-n] (x = 2, 4; R = CH3, C5Me5,) calculated on the DFT level of theory shows intriguing structural and electronic properties of the examined complexes. Different Ni-E complexes show preferred binding of C2H2 over C2H4 in bridging positions between Ni and E depending on the [Ni(ER)n] fragment. These findings render molecular TM/E systems, such as Ni/Zn, promising candidates to mimic key intermediates of intermetallic catalysts applied in heterogeneous hydrogenation reactions. We put these findings into the context of existing synthetic results and illustrate different experimental approaches to obtain compounds of the general formula [TMaEb](Cp*)c(UHC)d (UHC = unsaturated hydrocarbon ligands) as potential surface models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA