Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
2.
PLoS Pathog ; 17(1): e1009195, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465158

RESUMO

SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 104 TCID50 or 105 TCID50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 105 TCID50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 102 TCID50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development.


Assuntos
/genética , /patologia , Queratina-18/genética , /imunologia , Animais , /virologia , Modelos Animais de Doenças , Feminino , Humanos , Queratina-18/imunologia , Pulmão/imunologia , Pulmão/patologia , Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Traqueia/imunologia , Traqueia/virologia
3.
Sci Transl Med ; 13(578)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33431511

RESUMO

Detailed knowledge about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is important for uncovering the viral and host factors that contribute to coronavirus disease 2019 (COVID-19) pathogenesis. Old-World nonhuman primates recapitulate mild to moderate cases of COVID-19, thereby serving as important pathogenesis models. We compared African green monkeys inoculated with infectious SARS-CoV-2 or irradiated, inactivated virus to study the dynamics of virus replication throughout the respiratory tract. Genomic RNA from the animals inoculated with the irradiated virus was found to be highly stable, whereas subgenomic RNA, an indicator of viral replication, was found to degrade quickly. We combined this information with single-cell RNA sequencing of cells isolated from the lung and lung-draining mediastinal lymph nodes and developed new analysis methods for unbiased targeting of important cells in the host response to SARS-CoV-2 infection. Through detection of reads to the viral genome, we were able to determine that replication of the virus in the lungs appeared to occur mainly in pneumocytes, whereas macrophages drove the inflammatory response. Monocyte-derived macrophages recruited to the lungs, rather than tissue-resident alveolar macrophages, were most likely to be responsible for phagocytosis of infected cells and cellular debris early in infection, with their roles switching during clearance of infection. Together, our dataset provides a detailed view of the dynamics of virus replication and host responses over the course of mild COVID-19 and serves as a valuable resource to identify therapeutic targets.


Assuntos
/epidemiologia , Pulmão/virologia , Análise de Sequência de RNA , Análise de Célula Única , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , Líquido da Lavagem Broncoalveolar/virologia , Chlorocebus aethiops , DNA Viral/genética , Feminino , Genoma Viral/genética , Inflamação/patologia , Pulmão/patologia , Linfonodos/patologia , Macrófagos/patologia , Macrófagos/virologia , Masculino , Mediastino/patologia , Transcrição Genética , Carga Viral , Replicação Viral
4.
Viruses ; 12(12)2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266124

RESUMO

Within the past two decades, three zoonotic betacoronaviruses have been associated with outbreaks causing severe respiratory disease in humans. Of these, Middle East respiratory s yndrome coronavirus (MERS-CoV) is the only zoonotic coronavirus that is known to consistently result in frequent zoonotic spillover events from the proximate reservoir host-the dromedary camel. A comprehensive understanding of infection in dromedaries is critical to informing public health recommendations and implementing intervention strategies to mitigate spillover events. Experimental models of reservoir disease are absolutely critical in understanding the pathogenesis and transmission, and are key to testing potential dromedary vaccines against MERS-CoV. In this review, we describe experimental infections of dromedary camels as well as additional camelid models used to further understand the camel's role in MERS-CoV spillover to humans.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33197370

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic disease that was first identified in humans in 2012 in Saudi Arabia. MERS-CoV causes acute and severe respiratory disease in humans. The mortality rate of MERS in humans is ∼35% and >800 deaths have been reported globally as of August 2020. Dromedary camels are a natural host of the virus and the source of zoonotic human infection. In experimental studies, Bactrian camels are susceptible to MERS-CoV infection similar to dromedary camels; however, neither the virus, viral RNA, nor virus-specific antibodies were detected in Bactrian camel field samples so far. The aim of our study was to survey Mongolian camels for MERS-CoV-specific antibodies. A total of 180 camel sera, collected in 2016 and 2017, were involved in this survey: 17 of 180 sera were seropositive with an initial enzyme-linked immunosorbent assay (ELISA) test performed at the State Central Veterinary Laboratory in Mongolia. These 17 positive sera plus 53 additional negative sera were sent to the Rocky Mountain Laboratories, NIAID/NIH, and tested for the presence of antibodies with a similar ELISA, an indirect immunofluorescence assay (IFA), and a virus neutralization test (VNT). In these additional tests, a total of 21 of 70 sera were positive with ELISA and 10 sera were positive with IFA; however, none was positive in the VNT. Based on these results, we hypothesize that the ELISA/IFA-positive antibodies are (1) non-neutralizing antibodies or (2) directed against a MERS-CoV-like virus circulating in Bactrian camels in Mongolia.

6.
Cell ; 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33248470

RESUMO

Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding was observed from the upper respiratory tract of a female immunocompromised individual with chronic lymphocytic leukemia and acquired hypogammaglobulinemia. Shedding of infectious SARS-CoV-2 was observed up to 70 days, and of genomic and subgenomic RNA up to 105 days, after initial diagnosis. The infection was not cleared after the first treatment with convalescent plasma, suggesting a limited effect on SARS-CoV-2 in the upper respiratory tract of this individual. Several weeks after a second convalescent plasma transfusion, SARS-CoV-2 RNA was no longer detected. We observed marked within-host genomic evolution of SARS-CoV-2 with continuous turnover of dominant viral variants. However, replication kinetics in Vero E6 cells and primary human alveolar epithelial tissues were not affected. Our data indicate that certain immunocompromised individuals may shed infectious virus longer than previously recognized. Detection of subgenomic RNA is recommended in persistently SARS-CoV-2-positive individuals as a proxy for shedding of infectious virus.

7.
bioRxiv ; 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33083797

RESUMO

Since emerging in late 2019, SARS-CoV-2 has caused a global pandemic, and it may become an endemic human pathogen. Understanding the impact of environmental conditions on SARS-CoV-2 viability and its transmission potential is crucial to anticipating epidemic dynamics and designing mitigation strategies. Ambient temperature and humidity are known to have strong effects on the environmental stability of viruses 1 , but there is little data for SARS-CoV-2, and a general quantitative understanding of how temperature and humidity affect virus stability has remained elusive. Here, we characterise the stability of SARS-CoV-2 on an inert surface at a variety of temperature and humidity conditions, and introduce a mechanistic model that enables accurate prediction of virus stability in unobserved conditions. We find that SARS-CoV-2 survives better at low temperatures and extreme relative humidities; median estimated virus half-life was more than 24 hours at 10 °C and 40 % RH, but approximately an hour and a half at 27 °C and 65 % RH. Our results highlight scenarios of particular transmission risk, and provide a mechanistic explanation for observed superspreading events in cool indoor environments such as food processing plants. Moreover, our model predicts observations from other human coronaviruses and other studies of SARS-CoV-2, suggesting the existence of shared mechanisms that determine environmental stability across a number of enveloped viruses.

8.
bioRxiv ; 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32839775

RESUMO

Detailed knowledge about the dynamics of SARS-CoV-2 infection is important for unraveling the viral and host factors that contribute to COVID-19 pathogenesis. Old-World nonhuman primates recapitulate mild-moderate COVID-19 cases, thereby serving as important pathogenesis models. We compared African green monkeys inoculated with SARS-CoV-2 or inactivated virus to study the dynamics of virus replication throughout the respiratory tract. RNA sequencing of single cells from the lungs and mediastinal lymph nodes allowed a high-resolution analysis of virus replication and host responses over time. Viral replication was mainly localized to the lower respiratory tract, with evidence of replication in the pneumocytes. Macrophages were found to play a role in initiating a pro-inflammatory state in the lungs, while also interacting with infected pneumocytes. Our dataset provides a detailed view of changes in host and virus replication dynamics over the course of mild COVID-19 and serves as a valuable resource to identify therapeutic targets.

9.
bioRxiv ; 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803199

RESUMO

SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 10 4 TCID 50 or 10 5 TCID 50 , the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 10 5 TCID 50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Taken together, this suggests that this mouse model can be useful for studies of pathogenesis and medical countermeasure development. Authors Summary: The disease manifestation of COVID-19 in humans range from asymptomatic to severe. While several mild to moderate disease models have been developed, there is still a need for animal models that recapitulate the severe and fatal progression observed in a subset of patients. Here, we show that humanized transgenic mice developed dose-dependent disease when inoculated with SARS-CoV-2, the etiological agent of COVID-19. The mice developed upper and lower respiratory tract infection, with virus replication also in the brain after day 3 post inoculation. The pathological and immunological diseases manifestation observed in these mice bears resemblance to human COVID-19, suggesting increased usefulness of this model for elucidating COVID-19 pathogenesis further and testing of countermeasures, both of which are urgently needed.

10.
bioRxiv ; 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32793913

RESUMO

Decontamination of objects and surfaces can limit transmission of infectious agents via fomites or biological samples. It is required for the safe re-use of potentially contaminated personal protective equipment and medical and laboratory equipment. Heat treatment is widely used for the inactivation of various infectious agents, notably viruses. We show that for liquid specimens (here suspension of SARS-CoV-2 in cell culture medium), virus inactivation rate under heat treatment at 70°C can vary by almost two orders of magnitude depending on the treatment procedure, from a half-life of 0.86 min (95% credible interval: [0.09, 1.77]) in closed vials in a heat block to 37.0 min ([12.65, 869.82]) in uncovered plates in a dry oven. These findings suggest a critical role of evaporation in virus inactivation using dry heat. Placing samples in open or uncovered containers may dramatically reduce the speed and efficacy of heat treatment for virus inactivation. Heating procedures must be carefully specified when reporting experimental studies to facilitate result interpretation and reproducibility, and carefully considered when designing decontamination guidelines.

11.
Nature ; 586(7830): 578-582, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32731258

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the coronavirus disease 2019 (COVID-19) pandemic3. Vaccines are an essential countermeasure and are urgently needed to control the pandemic4. Here we show that the adenovirus-vector-based vaccine ChAdOx1 nCoV-19, which encodes the spike protein of SARS-CoV-2, is immunogenic in mice and elicites a robust humoral and cell-mediated response. This response was predominantly mediated by type-1 T helper cells, as demonstrated by the profiling of the IgG subclass and the expression of cytokines. Vaccination with ChAdOx1 nCoV-19 (using either a prime-only or a prime-boost regimen) induced a balanced humoral and cellular immune response of type-1 and type-2 T helper cells in rhesus macaques. We observed a significantly reduced viral load in the bronchoalveolar lavage fluid and lower respiratory tract tissue of vaccinated rhesus macaques that were challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated SARS-CoV-2-infected animals. However, there was no difference in nasal shedding between vaccinated and control SARS-CoV-2-infected macaques. Notably, we found no evidence of immune-enhanced disease after viral challenge in vaccinated SARS-CoV-2-infected animals. The safety, immunogenicity and efficacy profiles of ChAdOx1 nCoV-19 against symptomatic PCR-positive COVID-19 disease will now be assessed in randomized controlled clinical trials in humans.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Macaca mulatta , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Adenoviridae/genética , Animais , Líquido da Lavagem Broncoalveolar , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Citocinas/imunologia , Feminino , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Camundongos , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Th1/imunologia , Vacinação , Carga Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
13.
Emerg Infect Dis ; 26(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32511089

RESUMO

We found that environmental conditions affect the stability of severe acute respiratory syndrome coronavirus 2 in nasal mucus and sputum. The virus is more stable at low-temperature and low-humidity conditions, whereas warmer temperature and higher humidity shortened half-life. Although infectious virus was undetectable after 48 hours, viral RNA remained detectable for 7 days.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Muco/virologia , Pneumonia Viral/virologia , RNA Viral/análise , Escarro/virologia , Temperatura Alta , Humanos , Umidade , Cavidade Nasal/virologia , Pandemias , Estabilidade de RNA
14.
bioRxiv ; 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32511299

RESUMO

An outbreak of a novel coronavirus, now named SARS-CoV-2, causing respiratory disease and a ~2% case fatality rate started in Wuhan, China in December 2019. Following unprecedented rapid global spread, the World Health Organization declared COVID-19 a pandemic on March 11, 2020. Although data on disease in humans are emerging at a steady pace, certain aspects of the pathogenesis of SARS-CoV-2 can only be studied in detail in animal models, where repeated sampling and tissue collection is possible. Here, we show that SARS-CoV-2 causes respiratory disease in infected rhesus macaques, with disease lasting 8-16 days. Pulmonary infiltrates, a hallmark of human disease, were visible in lung radiographs of all animals. High viral loads were detected in swabs from the nose and throat of all animals as well as in bronchoalveolar lavages; in one animal we observed prolonged rectal shedding. Taken together, the rhesus macaque recapitulates moderate disease observed in the majority of human cases. The establishment of the rhesus macaque as a model of COVID-19 will increase our understanding of the pathogenesis of this disease and will aid development and testing of medical countermeasures.

15.
bioRxiv ; 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32511319

RESUMO

Background: Effective therapeutics to treat COVID-19 are urgently needed. Remdesivir is a nucleotide prodrug with in vitro and in vivo efficacy against coronaviruses. Here, we tested the efficacy of remdesivir treatment in a rhesus macaque model of SARS-CoV-2 infection. Methods: To evaluate the effect of remdesivir treatment on SARS-CoV-2 disease outcome, we used the recently established rhesus macaque model of SARS-CoV-2 infection that results in transient lower respiratory tract disease. Two groups of six rhesus macaques were infected with SARS-CoV-2 and treated with intravenous remdesivir or an equal volume of vehicle solution once daily. Clinical, virological and histological parameters were assessed regularly during the study and at necropsy to determine treatment efficacy. Results: In contrast to vehicle-treated animals, animals treated with remdesivir did not show signs of respiratory disease and had reduced pulmonary infiltrates on radiographs. Virus titers in bronchoalveolar lavages were significantly reduced as early as 12hrs after the first treatment was administered. At necropsy on day 7 after inoculation, lung viral loads of remdesivir-treated animals were significantly lower and there was a clear reduction in damage to the lung tissue. Conclusions: Therapeutic remdesivir treatment initiated early during infection has a clear clinical benefit in SARS-CoV-2-infected rhesus macaques. These data support early remdesivir treatment initiation in COVID-19 patients to prevent progression to severe pneumonia.

16.
bioRxiv ; 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32511340

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the COVID-19 pandemic3. Vaccines are an essential countermeasure urgently needed to control the pandemic4. Here, we show that the adenovirus-vectored vaccine ChAdOx1 nCoV-19, encoding the spike protein of SARS-CoV-2, is immunogenic in mice, eliciting a robust humoral and cell-mediated response. This response was not Th2 dominated, as demonstrated by IgG subclass and cytokine expression profiling. A single vaccination with ChAdOx1 nCoV-19 induced a humoral and cellular immune response in rhesus macaques. We observed a significantly reduced viral load in bronchoalveolar lavage fluid and respiratory tract tissue of vaccinated animals challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated rhesus macaques. Importantly, no evidence of immune-enhanced disease following viral challenge in vaccinated animals was observed. ChAdOx1 nCoV-19 is currently under investigation in a phase I clinical trial. Safety, immunogenicity and efficacy against symptomatic PCR-positive COVID-19 disease will now be assessed in randomised controlled human clinical trials.

19.
Nature ; 585(7824): 273-276, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516797

RESUMO

Effective therapies to treat coronavirus disease 2019 (COVID-19) are urgently needed. While many investigational, approved, and repurposed drugs have been suggested as potential treatments, preclinical data from animal models can guide the search for effective treatments by ruling out those that lack efficacy in vivo. Remdesivir (GS-5734) is a nucleotide analogue prodrug with broad antiviral activity1,2 that is currently being investigated in COVID-19 clinical trials and recently received Emergency Use Authorization from the US Food and Drug Administration3,4. In animal models, remdesivir was effective against infection with Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV)2,5,6. In vitro, remdesivir inhibited replication of SARS-CoV-27,8. Here we investigate the efficacy of remdesivir in a rhesus macaque model of SARS-CoV-2 infection9. Unlike vehicle-treated animals, macaques treated with remdesivir did not show signs of respiratory disease; they also showed reduced pulmonary infiltrates on radiographs and reduced virus titres in bronchoalveolar lavages twelve hours after the first dose. Virus shedding from the upper respiratory tract was not reduced by remdesivir treatment. At necropsy, remdesivir-treated animals had lower lung viral loads and reduced lung damage. Thus, treatment with remdesivir initiated early during infection had a clinical benefit in rhesus macaques infected with SARS-CoV-2. Although the rhesus macaque model does not represent the severe disease observed in some patients with COVID-19, our data support the early initiation of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Macaca mulatta/virologia , Pneumonia Viral/prevenção & controle , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacocinética , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Líquido da Lavagem Broncoalveolar/virologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Análise Mutacional de DNA , Progressão da Doença , Farmacorresistência Viral , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Masculino , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , Prevenção Secundária , Fatores de Tempo , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
20.
Emerg Infect Dis ; 26(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32491983

RESUMO

The coronavirus pandemic has created worldwide shortages of N95 respirators. We analyzed 4 decontamination methods for effectiveness in deactivating severe acute respiratory syndrome coronavirus 2 virus and effect on respirator function. Our results indicate that N95 respirators can be decontaminated and reused, but the integrity of respirator fit and seal must be maintained.


Assuntos
Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Descontaminação/métodos , Reutilização de Equipamento , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Ventiladores Mecânicos/virologia , Infecções por Coronavirus/virologia , Humanos , Pneumonia Viral/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA