RESUMO
The functionality and efficiency of proteins within a biological membrane are highly dependent on both the membrane lipid composition and the physiochemical properties of the solution. Lipid mesophases are directly influenced by changes in temperature, pH, water content or due to individual properties of single lipids such as photoswitchability. In this work, we were able to induce light- and temperature-driven mesophase transitions in a model membrane system containing a mixture of 1,2-dipalmitoyl-phosphatidylcholine phospholipids and azobenzene amphiphiles. We observed reversible and reproducible transitions between the lamellar and Pn3m cubic phase after illuminating the sample for 5â min with light of 365 and 455â nm wavelengths, respectively, to switch between the cis and trans states of the azobenzene N=N double bond. These light-controlled mesophase transitions were found for mixed complexes with up to 20% content of the photosensitive molecule and at temperatures below the gel-to-liquid crystalline phase transition temperature of 33°C. Our results demonstrate the potential to design bespoke model systems to study the response of membrane lipids and proteins upon changes in mesophase without altering the environment and thus provide a possible basis for drug delivery systems.
RESUMO
HYPOTHESIS: Room Temperature Ionic Liquids (RTILs) bulk's molecular layering dominates their structure also at the RTIL/sapphire interface, increasing the layer spacing with the cationic alkyl chain length n. However, the negatively-charged sapphire surface compresses the layers, increases the layering range, and affects the intra-layer structure in yet unknown ways. EXPERIMENTS: X-ray reflectivity (XR) off the RTIL/sapphire interface, for a broad homologous RTIL series 1-alkyl-3-methylimidazolium bis(trifluoromethansulfonyl)imide, hitherto unavailable for any RTIL. FINDINGS: RTIL layers against the sapphire, exhibit two spacings: da and db. da is n-varying, follows the behavior of the bulk spacing but exhibits a downshift, thus showing significant layer compression, and over twofold polar slab thinning. The latter suggests exclusion of anions from the interfacial region due to the negative sapphire charging by x-ray-released electrons. The layering range is larger than the bulk's. db is short and near n-independent, suggesting polar moieties' layering, the coexistence mode of which with the da-spaced layering is unclear. Comparing the present layering with the bulk's and the RTIL/air interface's provides insight into the Coulomb and dispersion interaction balance dominating the RTIL's structure and the impact thereon of the presence of a charged solid interface.
RESUMO
DNA nanotechnology is the future of many products in the pharmaceutical and cosmetic industries. Self-assembly of this negatively charged biopolymer at surfaces and interfaces is an essential step to elaborate its field of applications. In this study, the ionic liquid (IL) monolayer-assisted self-assembly of DNA macromolecules at the air-water interface has been closely monitored by employing various quantitative techniques, namely, surface pressure-area (π-A) isotherms, surface potential, interfacial rheology, and X-ray reflectivity (XRR). The π-A isotherms reveal that the IL 1,3-didecyl 3-methyl imidazolium chloride induces DNA self-assembly at the interface, leading to a thick viscoelastic film. The interfacial rheology exhibits a notable rise in the viscoelastic modulus as the surface pressure increases. The values of storage and loss moduli measured as a function of strain frequency suggest a relaxation frequency that depends on the length of the macromolecule. The XRR measurements indicate a considerable increase in DNA layer thickness at the elevated surface pressures depending on the number of base pairs of the DNA. The results are considered in terms of the electrostatic and hydrophobic interactions, allowing a quantitative conclusion about the arrangement of DNA strands underneath the monolayer of the ILs at the air-water interface.
Assuntos
Líquidos Iônicos , Propriedades de Superfície , Água/química , DNA , PressãoRESUMO
Following the reaction of biological membranes to external stimuli reveals fundamental insights into cellular function. Here, self-assembled lipid monolayers act as model membranes containing photoswitchable azobenzene glycolipids for investigating structural response during isomerization by combining Langmuir isotherms with X-ray scattering. Controlled in-situ trans/cis photoswitching of the azobenzene N = N double bond alters the DPPC monolayer structure, causing reproducible changes in surface pressure and layer thickness, indicating monolayer reorientation. Interestingly, for monolayers containing azobenzene glycolipids, along with the expected DPPC phase transitions an additional discontinuity is observed. The associated reorintation represents a crossover point, with the surface pressure and layer thickness changing in opposite directions above and below. This is evidence that the azobenzene glycolipids themselves change orientation within the monolayer. Such behaviour suggests that azobenzene glycolipids can act as a bidirectional switch in DPPC monolayers providing a tool to investigate membrane structure-function relationships in depth.
Assuntos
Compostos Azo , Glicolipídeos , Lipídeos de Membrana , Compostos Azo/química , Glicolipídeos/química , Lipídeos de Membrana/químicaRESUMO
Liquid-liquid interfaces offer intriguing possibilities for nanomaterials growth. Here, fundamental interface-related mechanisms that control the growth behavior in these systems are studied for Pb halide formation at the interface between NaX + PbX2 (X = F, Cl, Br) and liquid Hg electrodes using in situ X-ray scattering and complementary electrochemical and microscopy measurements. These studies reveal a decisive role of the halide species in nucleation and growth of these compounds. In Cl- and Br-containing solution, deposition starts by rapid formation of well-defined ultrathin (â¼7 Å) precursor adlayers, which provide a structural template for the subsequent quasi-epitaxial growth of c-axis oriented Pb(OH)X bulk crystals. In contrast, growth in F-containing solution proceeds by slow formation of a more disordered deposit, resulting in random bulk crystal orientations on the Hg surface. These differences can be assigned to the interface chemistry, specifically halide chemisorption, which steers the formation of these highly textured deposits at the liquid-liquid interface.
RESUMO
The X-ray reflectivity technique can provide out-of-plane electron-density profiles of surfaces, interfaces, and thin films, with atomic resolution accuracy. While current methodologies require high surface flatness, this becomes challenging for naturally curved surfaces, particularly for liquid metals, due to the very high surface tension. Here, the development of X-ray reflectivity measurements with beam sizes of a few tens of micrometres on highly curved liquid surfaces using a synchrotron diffractometer equipped with a double crystal beam deflector is presented. The proposed and developed method, which uses a standard reflectivity θ-2θ scan, is successfully applied to study in situ the bare surface of molten copper and molten copper covered by a graphene layer grown in situ by chemical vapor deposition. It was found that the roughness of the bare liquid surface of copper at 1400â K is 1.25 ± 0.10â Å, while the graphene layer is separated from the liquid surface by a distance of 1.55 ± 0.08â Å and has a roughness of 1.26 ± 0.09â Å.
RESUMO
The graphene family, especially graphene oxide (GO), has captured increasing prospects in the biomedical field due to its excellent physicochemical properties. Understanding the health and environmental impact of GO is of great importance for guiding future applications. Although their interactions with living organisms are omnipresent, the exact molecular mechanism is yet to be established. The cellular membrane is the first barrier for a foreign molecule to interact before entering into the cell. In the present study, a model system consisting of a lipid monolayer at the air-water interface represents one of the leaflets of this membrane. Surface pressure-area isotherms and advanced synchrotron X-ray scattering techniques have been employed to comprehend the interaction by varying the electrostatics of the membrane. The results depict a strong GO interaction with positively charged phospholipids, weak interaction with zwitterionic lipids, and interestingly negligible interaction with negatively charged lipids. GO flakes induce significant changes in the out-of-plane organization of a positively charged lipid monolayer with a minor influence on in-plane assembly of lipid chains. This interaction is packing-specific, and the influence of GO is much stronger at lower surface pressure. Even though for zwitterionic phospholipids, the GO flakes may partly insert into the lipid chains, the X-ray scattering results indicate that the flakes preferentially lie horizontally underneath the positively charged lipid monolayer. This in-depth structural description may pave new perspectives for the scientific community for the development of GO-based biosensors and biomedical materials.
Assuntos
Materiais Biomiméticos/química , Grafite/química , Nanopartículas/química , Fosfolipídeos/química , Ar , Teste de Materiais , Estrutura Molecular , Água/químicaRESUMO
This Comment raises several questions concerning the surface structure concluded in the paper referenced in the title. Specifically, that paper ignores previous experiments and simulations which demonstrate for the same ionic liquids depth-decaying, multilayered surface-normal density profiles rather than the claimed molecular mono- or bi-layers. We demonstrate that the claimed structure does not reproduce the measured X-ray reflectivity, which probes directly the surface-normal density profile. The measured reflectivities are found, however, to be well-reproduced by a multilayered density model. These results, and previous experimental and simulation results, cast severe doubt on the validity of the surface structure claimed in the paper referenced in the title.
RESUMO
Detailed in operando studies of electrochemically induced PbBrF deposition at the liquid mercury/liquid electrolyte interface are presented. The nucleation and growth were monitored using time-resolved X-ray diffraction and reflectivity combined with electrochemical measurements, revealing a complex potential-dependent behavior. PbBrF deposition commences at potentials above -0.7 V with the rapid formation of an ultrathin adlayer of one unit cell thickness, on top of which (001)-oriented three-dimensional crystallites are formed. Two potential regimes are identified. At low overpotentials, slow growth of a low surface density film of large crystals is observed. At high overpotentials, crossover to a potential-independent morphology occurs, consisting of a compact PbBrF deposit with a saturation thickness of 25 nm, which forms within a few minutes. This potential behavior can be rationalized by the increasing supersaturation near the interface, caused by the potential-dependent Pb2+ deamalgamation, which changes from a slow reaction-controlled process to a fast transport-controlled process in this range of overpotentials. In addition, growth on the liquid substrate is found to involve complex micromechanical effects, such as crystal reorientation and film breakup during dissolution.
RESUMO
We report on the in situ monitoring of the formation of conductive superlattices of Cu1.1S nanodiscs via cross-linking with semiconducting cobalt 4,4',4'',4'''-tetraaminophthalocyanine (CoTAPc) molecules at the liquid/air interface by real-time grazing incidence small angle X-ray scattering (GISAXS). We determine the structure, symmetry and lattice parameters of the superlattices, formed during solvent evaporation and ligand exchange on the self-assembled nanodiscs. Cu1.1S nanodiscs self-assemble into a two-dimensional hexagonal superlattice with a minor in-plane contraction (â¼0.2 nm) in the lattice parameter. A continuous contraction of the superlattice has been observed during ligand exchange, preserving the initial hexagonal symmetry. We estimate a resultant decrement of about 5% in the in-plane lattice parameters. The contraction is attributed to the continuous replacement of the native oleylamine surface ligands with rigid CoTAPc. The successful cross-linking of the nanodiscs is manifested in terms of the high electrical conductivity observed in the superlattices. This finding provides a convenient platform to understand the correlation between the structure and transport of the coupled superstructures of organic and inorganic nanocrystals of anisotropic shape.
RESUMO
Correction for 'Surface induced smectic order in ionic liquids - an X-ray reflectivity study of [C22C1im]+[NTf2]-' by Julian Mars et al., Phys. Chem. Chem. Phys., 2017, 19, 26651-26661.
RESUMO
Glycolipids as constituents of cell membranes play an important role in cell membrane functioning. To enable the structural modification of membranes on demand, embedding of photosensitive glycolipid mimetics was envisioned and novel amphiphilic glycolipid mimetics comprising a photoswitchable azobenzene unit were synthesized. In this study, the photochromic properties of these glycolipid mimetics were analyzed by means of UV/Vis spectroscopy and reversible photoswitching. The glycolipids were based on a racemic glycerolipid derivative to be comparable in DPPC (dipalmitoylphosphatidylcholine) phospholipid membrane monolayers. Carbohydrate head groups were altered between a ß-glucoside and a ß-lactosyl unit, as well as acyl chain lengths between C12 and C16, resulting in altered photoswitching. Langmuir isotherms showed that photoswitching of Langmuir films comprising the synthetic photosensitive glycoamphiphiles was successful.
RESUMO
X-ray reflectivity studies of the structure of liquid-vapour and liquid-liquid interfaces at modern sources, such as free-electron lasers, are currently impeded by the lack of dedicated liquid surface diffractometers. It is shown that this obstacle can be overcome by an alternative experimental approach that uses the natural curvature of a liquid drop for variation of the angle of incidence. Two modes of operation are shown: (i) sequential reflectivity measurements by a nanometre beam and (ii) parallel acquisition of large ranges of a reflectivity curve by micrometre beams. The feasibility of the two methods is demonstrated by studies of the Hg/vapour, H2O/vapour and Hg/0.1â M NaF interface. The obtained reflectivity curves match the data obtained by conventional techniques up to 5αc in micro-beam mode and up to 35αc in nano-beam mode, allowing observation of the Hg layering peak.
RESUMO
Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation's alkyl chain length [Formula: see text] from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present here such a study of the liquid-air interface for [Formula: see text], using angstrom-resolution X-ray methods. For [Formula: see text], a typical "simple liquid" monotonic surface-normal electron density profile [Formula: see text] is obtained, like those of water and organic solvents. For [Formula: see text], increasingly more pronounced nanoscale self-segregation of the molecules' charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear [Formula: see text] dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For [Formula: see text], a different surface phase is observed above melting. Our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk-surface structure relations.
RESUMO
Surface induced smectic order was found for the ionic liquid 1-methyl-3-docosylimidazolium bis(trifluoromethlysulfonyl)imide by X-ray reflectivity and grazing incidence scattering experiments. Near the free liquid surface, an ordered structure of alternating layers composed of polar and non-polar moieties is observed. This leads to an oscillatory interfacial profile perpendicular to the liquid surface with a periodicity of 3.7 nm. Small angle X-ray scattering and polarized light microscopy measurements suggest that the observed surface structure is related to fluctuations into a metastable liquid crystalline SmA2 phase that was found by supercooling the bulk liquid. The observed surface ordering persists up to 157 °C, i.e. more than 88 K above the bulk melting temperature of 68.1 °C. Close to the bulk melting point, we find a thickness of the ordered layer of L = 30 nm. The dependency of L(τ) = Λ ln(τ/τ1) vs. reduced temperature τ follows a logarithmic growth law. In agreement with theory, the pre-factor Λ is governed by the correlation length of the isotropic bulk phase.
RESUMO
The grazing incidence x-ray scattering results presented here show that the self-assembly process of HgSe nanocrystals formed at a liquid-liquid interface is quite different along the in-plane direction and across the interface. In situ x-ray reflectivity and ex situ microscopy measurements suggest quantized out-of-plane growth for HgSe nanoparticles of a size of about [Formula: see text] nm initially. Grazing incidence small-angle x-ray scattering measurements for films transferred from the water-toluene interface at various stages of reaction show that these nanoparticles first form random clusters with an average radius of 2.2 nm, giving rise to equally spaced rings of several orders. Finally, these clusters self-organize into face-centered cubic superstructures, giving sharp x-ray diffraction peaks oriented normal to the liquid-liquid interface with more than 100 nm-coherent domains. We also observed the x-ray diffraction pattern of the HgSe crystalline phase, with the superlattice peaks in these grazing incidence measurements of the transferred films. The electron microscopy and atomic force microscopy results support the x-ray observation of the self-organization of HgSe nanocrystals into close-packed superlattices. These results show that capillary wave fluctuation promotes the oriented attachment of clusters at the liquid-liquid interface, giving direct experimental evidence of contact epitaxy.
RESUMO
The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4â keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54â Å(-1) in the surface normal and out to 14.8â Å(-1) in the in-plane direction at 29.4â keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X-ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.
Assuntos
Difração de Raios X/instrumentação , Desenho de Equipamento , Espalhamento de RadiaçãoRESUMO
Crystal nucleation and growth at a liquid-liquid interface is studied on the atomic scale by in situ Å-resolution X-ray scattering methods for the case of liquid Hg and an electrochemical dilute electrolyte containing Pb(2+), F(-), and Br(-) ions. In the regime negative of the Pb amalgamation potential Φ(rp) = -0.70 V, no change is observed from the surface-layered structure of pure Hg. Upon potential-induced release of Pb(2+) from the Hg bulk at Φ > Φ(rp), the formation of an intriguing interface structure is observed, comprising a well-defined 7.6-Å-thick adlayer, decorated with structurally related 3D crystallites. Both are identified by their diffraction peaks as PbFBr, preferentially aligned with their axis along the interface normal. X-ray reflectivity shows the adlayer to consist of a stack of five ionic layers, forming a single-unit-cell-thick crystalline PbFBr precursor film, which acts as a template for the subsequent quasiepitaxial 3D crystal growth. This growth behavior is assigned to the combined action of electrostatic and short-range chemical interactions.
Assuntos
Cristalização/métodos , Eletroquímica/métodos , Eletrólitos/química , Mercúrio/química , Modelos Químicos , Metais/química , Espalhamento de Radiação , Eletricidade Estática , SíncrotronsRESUMO
Raman spectroscopy (RS) was used to determine the crystallinity of lactose (a commonly used carrier in dry powder inhaler (DPI) formulations). Samples of alpha-lactose monohydrate and amorphous lactose were prepared using ethanol precipitation and lyophilisation respectively. The anomeric forms were confirmed using DSC at a rate of 10 degrees C/min and heated to 250 degrees C. The Raman spectra of both alpha-lactose monohydrate and amorphous lactose were obtained. Distinguishable differences were seen between the two spectra including peak areas and intensities. Depolarisation ratios (rho) of each form were then determined to identify the crystallinity of the lactose carrier samples. At the prominent Raman bands 865 and 1082 cm-1, significant differences in rho values were observed for crystalline (0.80+/-0.07, 0.89+/-0.06 respectively) and amorphous samples (0.44+/-0.07, 0.51+/-0.10).