Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(35): 14879-14899, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533177

RESUMO

Colorectal cancer (CRC) has a poor prognosis and urgently needs better therapeutic approaches. 5-Aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) based photodynamic therapy (PDT) is already used in the clinic for several cancers but not yet well investigated for CRC. Currently, systemic administration of ALA offers a limited degree of tumour selectivity, except for intracranial tumours, limiting its wider use in the clinic. The combination of effective ALA-PDT and chemotherapy may provide a promising alternative approach for CRC treatment. Herein, theranostic Ag2S quantum dots (AS-2MPA) optically trackable in near-infrared (NIR), conjugated with endothelial growth factor receptor (EGFR) targeting Cetuximab (Cet) and loaded with ALA for PDT monotherapy or ALA/5-fluorouracil (5FU) for the combination therapy are proposed for enhanced treatment of EGFR(+) CRC. AS-2MPA-Cet exhibited excellent targeting of the high EGFR expressing cells and showed a strong intracellular signal for NIR optical detection in a comparative study performed on SW480, HCT116, and HT29 cells, which exhibit high, medium and low EGFR expression, respectively. Targeting provided enhanced uptake of the ALA loaded nanoparticles by strong EGFR expressing cells and formation of higher levels of PpIX. Cells also differ in their efficiency to convert ALA to PpIX, and SW480 was the best, followed by HT29, while HCT116 was determined as unsuitable for ALA-PDT. The therapeutic efficacy was evaluated in 2D cell cultures and 3D spheroids of SW480 and HT29 cells using AS-2MPA with either electrostatically loaded, hydrazone or amide linked ALA to achieve different levels of pH or enzyme sensitive release. Most effective phototoxicity was observed in SW480 cells using AS-2MPA-ALA-electrostatic-Cet due to enhanced uptake of the particles, fast ALA release and effective ALA-to-PpIX conversion. Targeted delivery reduced the effective ALA concentration significantly which was further reduced with codelivery of 5FU. Delivery of ALA via covalent linkages was also effective for PDT, but required a longer incubation time for the release of ALA in therapeutic doses. Phototoxicity was correlated with high levels of reactive oxygen species (ROS) and apoptotic/necrotic cell death. Hence, both AS-2MPA-ALA-Cet based PDT and AS-2MPA-ALA-Cet-5FU based chemo/PDT combination therapy coupled with strong NIR tracking of the nanoparticles demonstrate an exceptional therapeutic effect on CRC cells and excellent potential for synergistic multistage tumour targeting therapy.


Assuntos
Neoplasias Colorretais , Fotoquimioterapia , Pontos Quânticos , Ácido Aminolevulínico/farmacologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Humanos , Imagem Óptica , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas
2.
J Photochem Photobiol B ; 217: 112171, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33711563

RESUMO

Dual phototherapy agents have attracted great interest in recent years as they offer enhanced cytotoxicity on cancer cells due to the synergistic effect of photodynamic and photothermal therapies (PDT/PTT). In this study, we demonstrate a brominated hemicyanine (HC-1), which is previously shown as mitochondria targeting PDT agent, can also serve as an effective photosensitizer for PTT for the first time under a single (640 nm or 808 nm) and dual laser (640 nm + 808 nm) irradiation. Generation of reactive oxygen species and photothermal conversion as a function of irradiation wavelength and power were studied. Both single wavelength irradiations caused significant phototoxicity in colon and cervical cancer cells after 5 min of irradiation. However, co-irradiation provided near-complete elimination of cancer cells due to synergistic action. This work introduces an easily accessible small molecule-based synergistic phototherapy agent, which holds a great promise towards the realization of local, rapid and highly efficient treatment modalities against cancer.


Assuntos
Apoptose/efeitos dos fármacos , Carbocianinas/farmacologia , Lasers , Fármacos Fotossensibilizantes/farmacologia , Apoptose/efeitos da radiação , Carbocianinas/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Citometria de Fluxo , Humanos , Neoplasias/patologia , Neoplasias/terapia , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo
3.
J Photochem Photobiol B ; 213: 112082, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33221627

RESUMO

Multifunctional quantum dots (QDs) with photothermal therapy (PTT) potential loaded with an anticancer drug and labelled with a targeting agent can be highly effective nano-agents for tumour specific, image-guided PTT/chemo combination therapy of cancer. Ag-chalcogenides are promising QDs with good biocompatibility. Ag2S QDs are popular theranostic agents for imaging in near-infrared with PTT potential. However, theranostic applications of AgInS2 QDs emitting in the visible region and its PTT potential need to be explored. Here, we first present a simple synthesis of small, glutathione (GSH) coated AgInS2 QDs with peak emission at 634 nm, 21% quantum yield, and excellent long-term stability without an inorganic shell. Ag2S-GSH QDs emitting in the near-infrared region (peak emission = 822 nm) were also produced. Both QDs were tagged with folic acid (FA) and conjugated with methotrexate (MTX). About 3-fold higher internalization of FA-tagged QDs by folate-receptor (FR) overexpressing HeLa cells than HT29 and A549 cells was observed. Delivery of MTX by QD-FA-MTX reduced the IC50 of the drug from 10 µg/mL to 2.5-5 µg/mL. MTX release was triggered at acidic pH, which was further enhanced with local temperature increase created by laser irradiation. Irradiation of AgInS2-GSH QDs at 640 nm (300 mW) for 10 min, caused about 10 °C temperature increase but did not cause any thermal ablation of cells. On the other hand, Ag2S-GSH-FA based PTT effectively and selectively killed HeLa cells with 10 min 808 nm laser irradiation via mostly necrosis with an IC50 of 5 µg Ag/mL. Under the same conditions, IC50 of MTX was reduced to 0.21 µg/mL if Ag2S-GSH-FA.


Assuntos
Antineoplásicos/química , Receptor 1 de Folato/metabolismo , Ácido Fólico/metabolismo , Metotrexato/química , Pontos Quânticos/química , Prata/química , Células A549 , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Terapia Combinada , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Receptor 1 de Folato/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Células HT29 , Células HeLa , Humanos , Hipertermia Induzida , Metotrexato/farmacologia , Terapia Fototérmica , Exposição à Radiação , Nanomedicina Teranóstica
4.
Opt Lett ; 45(15): 4104-4107, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735234

RESUMO

We report, for the first time to our knowledge, tunable continuous-wave laser action in the Tm3+:BaY2F8 (BYF) crystal near 2.3 µm. In the experiments, a BYF crystal doped with 3 at. % thulium was end pumped with a narrow-linewidth, tunable Ti3+:sapphire laser with up to 920 mW of incident power. Lasing was achieved for the two pump polarizations of E//x and E//y. The best power performance was obtained in the case of E//x, double-end pumping, where 100 mW of output power was obtained at 2290 nm with 920 mW of pump power and 1% output coupler. The laser could be continuously tuned from 2233 to 2385 nm. Excitation spectra for E//x and E//y pumping were measured in the 760-810 nm range, and the optimum pumping wavelength was determined to be 779 nm for E//x. By using the lifetime and lasing threshold data, the stimulated emission cross section at 2290 nm was further determined to be (0.66±0.06)×10-24m2.

5.
Opt Lett ; 45(3): 656-659, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004276

RESUMO

We report experimental demonstration of graphene mode-locked operation of ${{\rm Tm}^{3 + }}\!:\!{{\rm YLiF}_4}$Tm3+:YLiF4 (YLF) and ${{\rm Tm}^{3 + }}\!:\!{{\rm KY}_3}{{\rm F}_{10}}$Tm3+:KY3F10 (KYF) lasers near 2.3 µm. To scale up the intracavity pulse energy, the cavity was extended, and double-end pumping was employed with a continuous-wave, tunable ${{\rm Ti}^{3 + }}\!:\!{\rm sapphire}$Ti3+:sapphire laser delivering up to 1 W near 780 nm. The extended ${{\rm Tm}^{3 + }}\!:\!{\rm KYF}$Tm3+:KYF laser cavity was purged with dry nitrogen to eliminate pulsing instabilities due to atmospheric absorption lines, but this was not needed in the case of the ${{\rm Tm}^{3 + }}\!:\!{\rm YLF}$Tm3+:YLF laser. Once initiated by graphene, stable uninterrupted mode-locked operation could be maintained with both lasers. With the extended cavity ${{\rm Tm}^{3 + }}\!:\!{\rm YLF}$Tm3+:YLF laser, 921 fs pulses were generated at a repetition rate of 17.2 MHz at 2304 nm. 739 fs pulses were obtained at the repetition rate of 54 MHz from the ${{\rm Tm}^{3 + }}\!:\!{\rm KYF}$Tm3+:KYF laser at 2340 nm. The corresponding pulse energy and peak power were 2.4 nJ and 2.6 kW for the ${{\rm Tm}^{3 + }}\!:\!{\rm YLF}$Tm3+:YLF laser, and 1.2 nJ and 1.6 kW for the ${{\rm Tm}^{3 + }}\!:\!{\rm KYF}$Tm3+:KYF laser. We foresee that it should be possible to generate shorter pulses at higher pump levels.

6.
J Photochem Photobiol B ; 201: 111648, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31710924

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have been recently recognized as highly efficient photothermal therapy (PTT) agents. Here, we demonstrate, for the first time to our knowledge, dose and laser intensity dependent PTT potential of small, spherical, 3-aminopropyltrimethoxysilane coated cationic superparamagnetic iron oxide nanoparticles (APTMS@SPIONs) in aqueous solutions upon irradiation at 795 nm. Indocyanine green (ICG) which has been recently used for photodynamic therapy (PDT), was loaded to APTMS@SPIONs to improve the stability of ICG and to achieve an effective mild PTT and PDT (dual therapy) combination for synergistic therapeutic effect on cancer cells via a single laser treatment in the near infrared (NIR). Neither APTMS@SPIONs nor ICG-APTMS@SPIONs showed dark toxicity on MCF7 breast and HT29 colon cancer cell lines. A safe laser procedure was determined as 10 min irradiation at 795 nm with 1.8 W/cm2 of laser intensity, at which APTMS@SPION did not cause a significant cell death. However, free ICG reduced cell viability at and above 10 µg/ml under these conditions along with generation of reactive oxygen species (ROS), more effectively in MCF7. ICG-APTMS@SPION treated cells showed 2-fold increase in ROS generation and near complete cell death at and below 5 µg/ml ICG dose, even in less sensitive HT29 cells after a single laser treatment at NIR, which would be safe for the healthy tissue and provide a longer penetration depth. Besides, both components can be utilized for diagnosis and the overall composition may be used for optical-image guided phototherapy in the NIR region.


Assuntos
Verde de Indocianina/química , Nanopartículas de Magnetita/toxicidade , Propilaminas/química , Silanos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Verde de Indocianina/farmacologia , Raios Infravermelhos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Fotoquimioterapia , Fototerapia , Espécies Reativas de Oxigênio/metabolismo , Temperatura
7.
Opt Lett ; 44(13): 3242-3245, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259931

RESUMO

We report continuous-wave lasing demonstration of a Tm3+:KY3F10 crystalline gain medium at 2343 nm. A narrow-linewidth, tunable, continuous-wave Ti3+:sapphire laser was used to end pump a Tm3+:KY3F10 crystal with thulium doping of 8 at. %. With 1 W of pump power, the resonator with a 1% output coupler generated output powers of 31 and 122 mW in single-pumping and double-pumping configurations, respectively. Excitation efficiency of the laser was investigated for pump wavelengths in the 765-806 nm range. Four pump bands were identified in this wavelength range, with the two most efficient pump bands centered at 773 and 778 nm. The output of the laser could be tuned smoothly and continuously over a spectral width of 125 nm from 2260 to 2385 nm. The lifetime of the H43 level was further measured to be 16 µs, and the emission cross section was determined based on lasing threshold measurements.

8.
Opt Lett ; 43(6): 1315-1318, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543280

RESUMO

We report, to the best of our knowledge, the shortest femtosecond pulses generated from a Kerr-lens mode-locked (KLM) Alexandrite laser operating near 750 nm. The Alexandrite gain medium was pumped with a continuous-wave (cw), 532 nm laser, and the performance of both the short and extended resonators was investigated. The use of an extended cavity eliminated the multi-wavelength spectral instabilities observed during the cw operation of the short cavity. Furthermore, since the repetition rate of the Alexandrite laser was reduced from 107 to 5.6 MHz, the resulting increase in the intracavity pulse energy provided enhanced Kerr nonlinearity and eliminated the Q-switching instabilities during mode-locked operation. The KLM MPC Alexandrite laser produced nearly transform-limited, 70 fs pulses at a pulse repetition rate of 5.6 MHz with only 1 W of pump power. The time-bandwidth product was further measured to be 0.331.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...