Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Internet Res ; 22(3): e15070, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32175913

RESUMO

BACKGROUND: Patient monitoring is central to perioperative and intensive care patient safety. Current state-of-the-art monitors display vital signs as numbers and waveforms. Visual Patient technology creates an easy-to-interpret virtual patient avatar model that displays vital sign information as it would look in a real-life patient (eg, avatar changes skin color from healthy to cyanotic depending on oxygen saturation). In previous studies, anesthesia providers using Visual Patient perceived more vital signs during short glances than with conventional monitoring. OBJECTIVE: We aimed to study the deeper mechanisms underlying information perception in conventional and avatar-based monitoring. METHODS: In this prospective, multicenter study with a within-subject design, we showed 32 anesthesia providers four 3- and 10-second monitoring scenarios alternatingly as either routine conventional or avatar-based in random sequence. All participants observed the same scenarios with both technologies and reported the vital sign status after each scenario. Using eye-tracking, we evaluated which vital signs the participants had visually fixated (ie, could have potentially read and perceived) during a scenario. We compared the frequencies and durations of participants' visual fixations of vital signs between the two technologies. RESULTS: Participants visually fixated more vital signs per scenario in avatar-based monitoring (median 10, IQR 9-11 versus median 6, IQR 4-8, P<.001; median of differences=3, 95% CI 3-4). In multivariable linear regression, monitoring technology (conventional versus avatar-based monitoring, difference=-3.3, P<.001) was an independent predictor of the number of visually fixated vital signs. The difference was less prominent in the longer (10-second) scenarios (difference=-1.5, P=.04). Study center, profession, gender, and scenario order did not influence the differences between methods. In all four scenarios, the participants visually fixated 9 of 11 vital signs statistically significantly longer using the avatar (all P<.001). Four critical vital signs (pulse rate, blood pressure, oxygen saturation, and respiratory rate) were visible almost the entire time of a scenario with the avatar; these were only visible for fractions of the observations with conventional monitoring. Visual fixation of a certain vital sign was associated with the correct perception of that vital sign in both technologies (avatar: phi coefficient=0.358; conventional monitoring: phi coefficient=0.515, both P<.001). CONCLUSIONS: This eye-tracking study uncovered that the way the avatar-based technology integrates the vital sign information into a virtual patient model enabled parallel perception of multiple vital signs and was responsible for the improved information transfer. For example, a single look at the avatar's body can provide information about: pulse rate (pulsation frequency), blood pressure (pulsation intensity), oxygen saturation (skin color), neuromuscular relaxation (extremities limp or stiff), and body temperature (heatwaves or ice crystals). This study adds a new and higher level of empirical evidence about why avatar-based monitoring improves vital sign perception compared with conventional monitoring.

2.
BMC Med Inform Decis Mak ; 20(1): 26, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041584

RESUMO

BACKGROUND: Maintaining adequate situation awareness is crucial for patient safety. Previous studies found that the use of avatar-based monitoring (Visual Patient Technology) improved the perception of vital signs compared to conventional monitoring showing numerical and waveform data; and was further associated with a reduction of perceived workload. In this study, we aimed to evaluate the effectiveness of Visual Patient Technology on perceptive performance and perceived workload when monitoring multiple patients at the same time, such as in central station monitors in intensive care units or operating rooms. METHODS: A prospective, within-subject, computer-based laboratory study was performed in two tertiary care hospitals in Switzerland in 2018. Thirty-eight physician and nurse anesthetists volunteered for the study. The participants were shown four different central monitor scenarios in sequence, where each scenario displayed two critical and four healthy patients simultaneously for 10 or 30 s. After each scenario, participants had to recall the vital signs of the critical patients. Perceived workload was assessed with the National Aeronautics and Space Administration Task-Load-Index (NASA TLX) questionnaire. RESULTS: In the 10-s scenarios, the median number of remembered vital signs significantly improved from 7 to 11 using avatar-based versus conventional monitoring with a mean of differences of 4 vital signs, 95% confidence interval (CI) 2 to 6, p < 0.001. At the same time, the median NASA TLX scores were significantly lower for avatar-based monitoring (67 vs. 77) with a mean of differences of 6 points, 95% CI 0.5 to 11, p = 0.034. In the 30-s scenarios, vital sign perception and workload did not differ significantly. CONCLUSIONS: In central monitor multiple patient monitoring, we found a significant improvement of vital sign perception and reduction of perceived workload using Visual Patient Technology, compared to conventional monitoring. The technology enabled improved assessment of patient status and may, thereby, help to increase situation awareness and enhance patient safety.

3.
BMC Anesthesiol ; 19(1): 87, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138143

RESUMO

BACKGROUND: Patient monitoring is critical for perioperative patient safety as anesthesiologists routinely make crucial therapeutic decisions from the information displayed on patient monitors. Previous research has shown that today's patient monitoring has room for improvement in areas such as information overload and alarm fatigue. The rationale of this study was to learn more about the problems anesthesiologists face in patient monitoring and to derive improvement suggestions for next-generation patient monitors. METHODS: We conducted a two-center qualitative/quantitative study. Initially, we interviewed 120 anesthesiologists (physicians and nurses) about the topic: common problems with patient monitoring in your daily work. Through deductive and inductive coding, we identified major topics and sub themes from the interviews. In a second step, a field survey, a separate group of 25 anesthesiologists rated their agree- or disagreement with central statements created for all identified major topics. RESULTS: We identified the following six main topics: 1. "Alarms," 2. "Artifacts," 3. "Software," 4. "Hardware," 5. "Human Factors," 6. "System Factors," and 17 sub themes. The central statements rated for the major topics were: 1. "problems with alarm settings complicate patient monitoring." (56% agreed) 2. "artifacts complicate the assessment of the situation." (64% agreed) 3. "information overload makes it difficult to get an overview quickly." (56% agreed) 4. "problems with cables complicate working with patient monitors." (92% agreed) 5. "factors related to human performance lead to critical information not being perceived." (88% agreed) 6. "Switching between monitors from different manufacturers is difficult." (88% agreed). The ratings of all statements differed significantly from neutral (all p < 0.03). CONCLUSION: This study provides an overview of the problems anesthesiologists face in patient monitoring. Some of the issues, to our knowledge, were not previously identified as common problems in patient monitoring, e.g., hardware problems (e.g., cable entanglement and worn connectors), human factor aspects (e.g., fatigue and distractions), and systemic factor aspects (e.g., insufficient standardization between manufacturers). An ideal monitor should transfer the relevant patient monitoring information as efficiently as possible, prevent false positive alarms, and use technologies designed to improve the problems in patient monitoring.


Assuntos
Anestesiologistas/normas , Atitude do Pessoal de Saúde , Desenho de Equipamento/normas , Monitorização Intraoperatória/normas , Enfermeiras Anestesistas/normas , Qualidade da Assistência à Saúde/normas , Anestesiologistas/psicologia , Desenho de Equipamento/métodos , Desenho de Equipamento/psicologia , Feminino , Humanos , Masculino , Monitorização Intraoperatória/métodos , Monitorização Intraoperatória/psicologia , Inquéritos e Questionários
4.
BMC Anesthesiol ; 18(1): 188, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30537934

RESUMO

BACKGROUND: A new patient monitoring technology called Visual Patient, which transforms numerical and waveform data into a virtual model (an avatar) of the monitored patient, has been shown to improve the perception of vital signs compared to conventional patient monitoring. In order to gain a deeper understanding of the opinions of potential future users regarding the new technology, we have analyzed the answers of two large groups of anesthetists using two different study methods. METHODS: First, we carried out a qualitative analysis guided by the "consolidated criteria for reporting qualitative research" checklist. For this analysis, we interviewed 128 anesthesiologists, asking: "Where do you see advantages in Visual Patient monitoring?" and afterward identified major and minor themes in their answers. In a second study, an online survey with 38 anesthesiologists at two different institutions, we added a quantitative part in which anesthesiologists rated statements based on the themes identified in the prior analysis on an ordinal rating scale. RESULTS: We identified four high-level themes: "quick situation recognition," "intuitiveness," "unique design characteristics," and "potential future uses," and eight subthemes. The quantitative questions raised for each major theme were: 1. "The Visual Patient technology enabled me to get a quick overview of the situation." (63% of the participants agreed or very much agreed to this statement). 2. "I found the Visual Patient technology to be intuitive and easy to learn." (82% agreed or very much agreed to this statement). 3. "The visual design features of the Visual Patient technology (e.g., the avatar representation) are not helpful for patient monitoring." (11% agreed to this statement). 4. "I think the Visual Patient technology might be helpful for non-monitor experts (e.g., surgeons) in the healthcare system." (53% of the participants agreed or strongly agreed). CONCLUSION: This mixed method study provides evidence that the included anesthesiologists considered the new avatar-based technology to be intuitive and easy to learn and that the technology enabled them to get an overview of the situation quickly. Only a few users considered the avatar presentation to be unhelpful for patient monitoring and about half think it might be useful for non-experts.


Assuntos
Anestesistas/estatística & dados numéricos , Monitorização Fisiológica/métodos , Realidade Virtual , Sinais Vitais/fisiologia , Adulto , Atitude do Pessoal de Saúde , Tecnologia Biomédica/métodos , Lista de Checagem , Feminino , Humanos , Masculino , Monitorização Fisiológica/instrumentação , Inquéritos e Questionários
5.
Medicine (Baltimore) ; 95(23): e3849, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27281093

RESUMO

Nonanesthesiologist administered propofol (NAAP) sedation for flexible bronchoscopy is controversial, because there is no established airway management (AM) training for pulmonologists. The aim was to investigate the performance and acceptance of a proposed AM algorithm and training for pulmonologists performing NAAP sedation. The algorithm includes using 3 maneuvers including bag mask ventilation (BMV), laryngeal tube (LT), and needle cricothyrotomy (NCT). During training (consisting of 2 sessions with a break of 9 weeks in between), these maneuvers were demonstrated and exercised, followed by 4 consecutive attempts to succeed with each of these devices. The primary outcome was the improvement of completion time needed for a competent airway. Secondary outcomes were the trainees' overall reactions to the training and algorithm, and the perceptions of psychological safety (PS). The 23 staff members of the Department of Pulmonology performed a total of 552 attempts at AM procedures (4 attempts at each of the 3 maneuvers in 2 sessions), and returned a total of 42 questionnaires (4 questionnaires were not returned). Median completion times of LT and NCT improved significantly between Sessions 1 and 2 (P = 0.005 and P = 0.04, respectively), whereas BMV was only marginally improved (P = 0.05). Trainees perceived training to be useful and expressed satisfaction with this training and the algorithm. The perception of PS increased after training. An AM algorithm and training for pulmonologists leads to improved technical AM skills, and is considered useful by trainees and raised their perception of PS during training. It thus represents a promising program.


Assuntos
Manuseio das Vias Aéreas/métodos , Broncoscopia/educação , Competência Clínica , Sedação Consciente/métodos , Educação Médica Continuada/métodos , Propofol/administração & dosagem , Pneumologistas/educação , Adulto , Manuseio das Vias Aéreas/normas , Feminino , Seguimentos , Humanos , Hipnóticos e Sedativos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA