Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811494

RESUMO

Since the discovery of high-temperature superconductivity in copper oxide materials1, there have been sustained efforts to both understand the origins of this phase and discover new cuprate-like superconducting materials2. One prime materials platform has been the rare-earth nickelates and, indeed, superconductivity was recently discovered in the doped compound Nd0.8Sr0.2NiO2 (ref. 3). Undoped NdNiO2 belongs to a series of layered square-planar nickelates with chemical formula Ndn+1NinO2n+2 and is known as the 'infinite-layer' (n = ∞) nickelate. Here we report the synthesis of the quintuple-layer (n = 5) member of this series, Nd6Ni5O12, in which optimal cuprate-like electron filling (d8.8) is achieved without chemical doping. We observe a superconducting transition beginning at ~13 K. Electronic structure calculations, in tandem with magnetoresistive and spectroscopic measurements, suggest that Nd6Ni5O12 interpolates between cuprate-like and infinite-layer nickelate-like behaviour. In engineering a distinct superconducting nickelate, we identify the square-planar nickelates as a new family of superconductors that can be tuned via both doping and dimensionality.

2.
Nano Lett ; 21(21): 9210-9216, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699234

RESUMO

All-optical switching of magnetization has great potential for use in future ultrafast and energy efficient nanoscale magnetic storage devices. So far, research has been almost exclusively focused on rare-earth based materials, which limits device tunability and scalability. Here, we show that a perpendicularly magnetized synthetic ferrimagnet composed of two distinct transition metal ferromagnetic layers, Ni3Pt and Co, can exhibit helicity independent magnetization switching. Switching occurs between two equivalent remanent states with antiparallel alignment of the Ni3Pt and Co magnetic moments and is observable over a broad temperature range. Time-resolved measurements indicate that the switching is driven by a spin-polarized current passing through the subnanometer Ir interlayer. The magnetic properties of this model system may be tuned continuously via subnanoscale changes in the constituent layer thicknesses as well as growth conditions, allowing the underlying mechanisms to be elucidated and paving the way to a new class of data storage devices.

3.
Nat Commun ; 12(1): 4602, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326334

RESUMO

The convergence of proton conduction and multiferroics is generating a compelling opportunity to achieve strong magnetoelectric coupling and magneto-ionics, offering a versatile platform to realize molecular magnetoelectrics. Here we describe machine learning coupled with additive manufacturing to accelerate the design strategy for hydrogen-bonded multiferroic macromolecules accompanied by strong proton dependence of magnetic properties. The proton switching magnetoelectricity occurs in three-dimensional molecular heterogeneous solids. It consists of a molecular magnet network as proton reservoir to modulate ferroelectric polarization, while molecular ferroelectrics charging proton transfer to reversibly manipulate magnetism. The magnetoelectric coupling induces a reversible 29% magnetization control at ferroelectric phase transition with a broad thermal hysteresis width of 160 K (192 K to 352 K), while a room-temperature reversible magnetic modulation is realized at a low electric field stimulus of 1 kV cm-1. The findings of electrostatic proton transfer provide a pathway of proton mediated magnetization control in hierarchical molecular multiferroics.

4.
Nat Commun ; 12(1): 3952, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172740

RESUMO

The recent discovery of ferromagnetism in two-dimensional van der Waals crystals has provoked a surge of interest in the exploration of fundamental spin interaction in reduced dimensions. However, existing material candidates have several limitations, notably lacking intrinsic room-temperature ferromagnetic order and air stability. Here, motivated by the anomalously high Curie temperature observed in bulk diluted magnetic oxides, we demonstrate room-temperature ferromagnetism in Co-doped graphene-like Zinc Oxide, a chemically stable layered material in air, down to single atom thickness. Through the magneto-optic Kerr effect, superconducting quantum interference device and X-ray magnetic circular dichroism measurements, we observe clear evidences of spontaneous magnetization in such exotic material systems at room temperature and above. Transmission electron microscopy and atomic force microscopy results explicitly exclude the existence of metallic Co or cobalt oxides clusters. X-ray characterizations reveal that the substitutional Co atoms form Co2+ states in the graphitic lattice of ZnO. By varying the Co doping level, we observe transitions between paramagnetic, ferromagnetic and less ordered phases due to the interplay between impurity-band-exchange and super-exchange interactions. Our discovery opens another path to 2D ferromagnetism at room temperature with the advantage of exceptional tunability and robustness.

6.
Adv Mater ; 33(8): e2004830, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33432657

RESUMO

Topological solitary fields, such as magnetic and polar skyrmions, are envisioned to revolutionize microelectronics. These configurations have been stabilized in solid-state materials with a global inversion symmetry breaking, which translates in magnetic materials into a vector spin exchange known as the Dzyaloshinskii-Moriya interaction (DMI), as well as spin chirality selection and isotropic solitons. This work reports experimental evidence of 3D chiral spin textures, such as helical spins and skyrmions with different chirality and topological charge, stabilized in amorphous Fe-Ge thick films. These results demonstrate that structurally and chemically disordered materials with a random DMI can resemble inversion symmetry broken systems with similar magnetic properties, moments, and states. Disordered systems are distinguished from systems with global inversion symmetry breaking by their degenerate spin chirality that allows for forming isotropic and anisotropic topological spin textures at remanence, while offering greater flexibility in materials synthesis, voltage, and strain manipulation.

7.
J Phys Condens Matter ; 33(10): 104003, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33264766

RESUMO

Structural and chemical order impact magnetic properties of solids, which are governed by spin-orbit coupling and exchange interaction. The ordered L10 phase of FePt is a key material to heat-assisted magnetic recording; to enable high storage density, a solid understanding is needed of structural and chemical disorder at small length scales, as well as associated modifications of the electronic band structure. Here, we investigate the effect of boron and copper additions (≲6 mol% Cu) on structural and magnetic properties of L10 FePt granular media. Two copper-driven mechanisms, although competing, can lead to improvements in both structural and magnetic properties. In particular, the Cu substitution on the Fe-site leads to a degradation of magnetic properties due to the delocalized electron orbitals originating from a larger Cu d-orbital occupancy. At the same time, Cu substitution leads to an enhanced crystallographic order and consequently magneto-crystalline anisotropy, which offsets the former effect to a large extent. Our study is based on magnetometry, x-ray absorption spectroscopy, ab-initio calculations and a phenomenological theory of disordered FePt granular media. We do not observe a sizable modification to Fe moments and electronic configuration; Cu reveals two different resonances associated with the presence and absence of Cu-B bonds that vary with total Cu concentration.

8.
ACS Appl Mater Interfaces ; 12(46): 52116-52124, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33156990

RESUMO

Microwave and heat-assisted magnetic recordings are two competing technologies that have greatly increased the capacity of hard disk drives. The efficiency of the magnetic recording process can be further improved by employing non-collinear spin structures that combine perpendicular and in-plane magnetic anisotropy. Here, we investigate both microwave and optically excited magnetization dynamics in [Co/Pt]/NiFe exchange spring samples. The resulting canted magnetization within the nanoscale [Co/Pt]/NiFe interfacial region allows for optically stimulated magnetization precession to be observed for an extended magnetic field and frequency range. The results can be explained by formation of an imprinted domain structure, which locks the magnetization orientation and makes the structures more robust against external perturbations. Tuning the canted interfacial domain structure may provide greater control of optically excited magnetization reversal and optically generated spin currents, which are of paramount importance for future ultrafast magnetic recording and spintronic applications.

9.
J Phys Chem Lett ; 11(19): 8231-8237, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878433

RESUMO

Voltage-controlled nonvolatile isothermal spin state switching of a [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1-1y)-borohydride, bipy = 2,2'-bipyridine) film, more than 40 to 50 molecular layers thick, is possible when it is adsorbed onto a molecular ferroelectric substrate. Accompanying this high-spin and low-spin state switching, at room temperature, we observe a remarkable change in conductance, thereby allowing not only nonvolatile voltage control of the spin state ("write") but also current sensing of the molecular spin state ("read"). Monte Carlo Ising model simulations of the high-spin state occupancy, extracted from X-ray absorption spectroscopy, indicate that the energy difference between the low-spin and high-spin state is modified by 110 meV. Transport measurements demonstrate that four terminal voltage-controlled devices can be realized using this system.

10.
ACS Appl Mater Interfaces ; 12(40): 45437-45443, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32852194

RESUMO

The La0.7Sr0.3CoO3-δ/La0.7Sr0.3MnO3-δ (LSCO/LSMO) bilayer system is an ideal perovskite oxide platform for investigating interface reconstruction and its effect on their magnetic properties. Previous studies have shown that LSCO can separate into magnetic sublayers, which possess distinct trends as the total LSCO thickness increases. In this study, we used polarized neutron reflectometry to quantify changes in the magnetic and chemical depth profiles, and it confirms the formation of ∼12 Å-thick interfacial LSCO and LSMO layers, characterized by a decreased nuclear scattering length density compared to the bulk of the layers. This decrease is attributed to the combined effects of oxygen vacancy formation and interfacial charge transfer, which lead to magnetically active Co2+ ions with ionic radii larger than the Co3+/Co4+ ions typically found in bulk LSCO or single-layer films. The interfacial magnetization values, as well as Co2+ ion and oxygen vacancy concentrations, depend strongly on the LSCO layer thickness. These results highlight the sensitive interplay of the cation valence states, oxygen vacancy concentration, and magnetization at interfaces in perovskite oxide multilayers, demonstrating the potential to tune their functional properties via careful design of their structure.

11.
Nano Lett ; 20(7): 4739-4747, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32459968

RESUMO

Magnetic materials offer an opportunity to overcome the scalability and energy consumption limits affecting the semiconductor industry. New computational device architectures, such as low-power solid state magnetic logic and memory-in-logic devices, have been proposed which rely on the unique properties of magnetic materials. Magnetic skyrmions, topologically protected quasi-particles, are at the core of many of the newly proposed spintronic devices. Many different materials systems have been shown hosting ferromagnetic skyrmions at room temperature. However, a magnetic field is a key ingredient to stabilize skyrmions, and this is not desirable for applications, due to the poor scalability of active components generating magnetic fields. Here we report the observation of ferromagnetic skyrmions at room temperature and zero magnetic field, stabilized through interlayer exchange coupling (IEC) between a reference magnet and a free magnet. Most importantly, by tuning the strength of the IEC, we are able to tune the skyrmion size and areal density. Our findings are relevant to the development of skyrmion-based spintronic devices suitable for general-use applications which go beyond modern nanoelectronics.

12.
Dalton Trans ; 49(18): 5869-5880, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32307503

RESUMO

Tetrahedrally coordinated aluminate Al(OH)4- and dialuminate Al2O(OH)62- anions are considered to be major species in aluminum-rich alkaline solutions. However, their relative abundance remains difficult to spectroscopically quantify due to local structure similarities and poorly understood effects arising from extent of polymerization and counter-cations. To help unravel these relationships here we report detailed characterization of three solid-phase analogues as structurally and compositionally well-defined reference materials. We successfully synthesized a cesium salt of the aluminate monomer, CsAl(OH)4·2H2O, for comparison to potassium and rubidium salts of the aluminate dimer, K2Al2O(OH)6, and Rb2Al2O(OH)6, respectively. Single crystal and powder X-ray diffraction methods clearly reveal the structure and purity of these materials for which a combination of 27Al MAS-NMR, Al K-edge X-ray absorption and Raman/IR spectroscopies was then used to fingerprint the two major tetrahedrally coordinated Al species. The resulting insights into the effect of Al-O-Al bridge formation between aluminate tetrahedra on spectroscopic features may also be generalized to the many materials that are based on this motif.

13.
Nat Commun ; 11(1): 902, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060300

RESUMO

Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides provide many potential candidates that present a strong response under electrolytic gating. However, very few show a reversible structural transformation at room-temperature. Here, we report the realization of a digitally synthesized transition metal oxide that shows a reversible, electric-field-controlled transformation between distinct crystalline phases at room-temperature. In superlattices comprised of alternating one-unit-cell of SrIrO3 and La0.2Sr0.8MnO3, we find a reversible phase transformation with a 7% lattice change and dramatic modulation in chemical, electronic, magnetic and optical properties, mediated by the reversible transfer of oxygen and hydrogen ions. Strikingly, this phase transformation is absent in the constituent oxides, solid solutions and larger period superlattices. Our findings open up this class of materials for voltage-controlled functionality.

14.
J Phys Condens Matter ; 32(3): 034001, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31639105

RESUMO

The addition of various dipolar molecules is shown to affect the temperature dependence of the spin state occupancy of the much studied spin crossover Fe(II) complex, [Fe{H2B(pz)2}2(bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine). Specifically, the addition of benzimidazole results in a re-entrant spin crossover transition, i.e. the spin state starts in the mostly low spin state, then high spin state occupancy increases, and finally the high spin state occupancy decreases with increasing temperature. This behavior contrasts with that observed when the highly polar p -benzoquinonemonoimine zwitterion C6H2(…NH2)2(…O)2 was mixed with [Fe{H2B(pz)2}2(bipy)], which resulted in locking [Fe{H2B(pz)2}2(bipy)] largely into a low spin state while addition of the ethyl derivative C6H2(…NHC2H5)2(…O)2 did not appear to perturb the spin crossover transition of [Fe{H2B(pz)2}2(bipy)].

16.
Natl Sci Rev ; 7(4): 745-754, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34692093

RESUMO

Mechanically exfoliated two-dimensional ferromagnetic materials (2D FMs) possess long-range ferromagnetic order and topologically nontrivial skyrmions in few layers. However, because of the dimensionality effect, such few-layer systems usually exhibit much lower Curie temperature (T C) compared to their bulk counterparts. It is therefore of great interest to explore effective approaches to enhance their T C, particularly in wafer-scale for practical applications. Here, we report an interfacial proximity-induced high-T C 2D FM Fe3GeTe2 (FGT) via A-type antiferromagnetic material CrSb (CS) which strongly couples to FGT. A superlattice structure of (FGT/CS)n, where n stands for the period of FGT/CS heterostructure, has been successfully produced with sharp interfaces by molecular-beam epitaxy on 2-inch wafers. By performing elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally discovered that T C of 4-layer Fe3GeTe2 can be significantly enhanced from 140 K to 230 K because of the interfacial ferromagnetic coupling. Meanwhile, an inverse proximity effect occurs in the FGT/CS interface, driving the interfacial antiferromagnetic CrSb into a ferrimagnetic state as evidenced by double-switching behavior in hysteresis loops and the XMCD spectra. Density functional theory calculations show that the Fe-Te/Cr-Sb interface is strongly FM coupled and doping of the spin-polarized electrons by the interfacial Cr layer gives rise to the T C enhancement of the Fe3GeTe2 films, in accordance with our XMCD measurements. Strikingly, by introducing rich Fe in a 4-layer FGT/CS superlattice, T C can be further enhanced to near room temperature. Our results provide a feasible approach for enhancing the magnetic order of few-layer 2D FMs in wafer-scale and render opportunities for realizing realistic ultra-thin spintronic devices.

17.
ACS Nano ; 13(11): 12894-12900, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31693338

RESUMO

We present a combined experimental and theoretical study of monolayer vanadium ditelluride, VTe2, grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Using various in situ microscopic and spectroscopic techniques, including scanning tunneling microscopy/spectroscopy, synchrotron X-ray and angle-resolved photoemission, and X-ray absorption, together with theoretical analysis by density functional theory calculations, we demonstrate direct evidence of the metallic 1T phase and 3d1 electronic configuration in monolayer VTe2 that also features a (4 × 4) charge density wave order at low temperatures. In contrast to previous theoretical predictions, our element-specific characterization by X-ray magnetic circular dichroism rules out a ferromagnetic order intrinsic to the monolayer. Our findings provide essential knowledge necessary for understanding this interesting yet less explored metallic monolayer in the emerging family of van der Waals magnets.

18.
Proc Natl Acad Sci U S A ; 116(40): 19863-19868, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527227

RESUMO

We investigate [Formula: see text]/[Formula: see text] superlattices in which we observe a full electron transfer at the interface from Ir to Ni, triggering a massive structural and electronic reconstruction. Through experimental characterization and first-principles calculations, we determine that a large crystal field splitting from the distorted interfacial [Formula: see text] octahedra surprisingly dominates over the spin-orbit coupling and together with the Hund's coupling results in the high-spin (S = 1) configurations on both the Ir and Ni sites. This demonstrates the power of interfacial charge transfer in coupling lattice, charge, orbital, and spin degrees of freedom, opening fresh avenues of investigation of quantum states in oxide superlattices.

19.
Nano Lett ; 19(7): 4594-4600, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251073

RESUMO

When graphene is placed on a crystalline surface, the periodic structures within the layers superimpose and moiré superlattices form. Small lattice rotations between the two materials in contact strongly modify the moiré lattice parameter, upon which many electronic, vibrational, and chemical properties depend. While precise adjustment of the relative orientation in the degree- and sub-degree-range can be achieved via careful deterministic transfer of graphene, we report on the spontaneous reorientation of graphene on a metallic substrate, Ir(111). We find that selecting a substrate temperature between 1530 and 1000 K during the growth of graphene leads to distinct relative rotational angles of 0°, ± 0.6°, ±1.1°, and ±1.7°. When modeling the moiré superlattices as two-dimensional coincidence networks, we can ascribe the observed rotations to favorable low-strain graphene structures. The dissimilar thermal expansion of the substrate and graphene is regarded as an effective compressive biaxial pressure that is more easily accommodated in graphene by small rotations rather than by compression.

20.
Adv Mater ; 31(23): e1901185, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30997712

RESUMO

Monolayer VSe2 , featuring both charge density wave and magnetism phenomena, represents a unique van der Waals magnet in the family of metallic 2D transition-metal dichalcogenides (2D-TMDs). Herein, by means of in situ microscopy and spectroscopic techniques, including scanning tunneling microscopy/spectroscopy, synchrotron X-ray and angle-resolved photoemission, and X-ray absorption, direct spectroscopic signatures are established, that identify the metallic 1T-phase and vanadium 3d1 electronic configuration in monolayer VSe2 grown on graphite by molecular-beam epitaxy. Element-specific X-ray magnetic circular dichroism, complemented with magnetic susceptibility measurements, further reveals monolayer VSe2 as a frustrated magnet, with its spins exhibiting subtle correlations, albeit in the absence of a long-range magnetic order down to 2 K and up to a 7 T magnetic field. This observation is attributed to the relative stability of the ferromagnetic and antiferromagnetic ground states, arising from its atomic-scale structural features, such as rotational disorders and edges. The results of this study extend the current understanding of metallic 2D-TMDs in the search for exotic low-dimensional quantum phenomena, and stimulate further theoretical and experimental studies on van der Waals monolayer magnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...