Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 41(8): 4047-4052, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281873

RESUMO

BACKGROUND/AIM: Tropomyosin-related kinase B (TrkB)/brain-derived neurotrophic factor (BDNF) signaling plays a role in inducing malignant phenotypes in several aggressive types of cancers. To create a conclusive therapy targeting TrkB/BDNF signaling in solid refractory cancers, the biological significance of TrkB/BDNF signaling was analyzed in pancreatic ductal adenocarcinoma (PDAC) cells. MATERIALS AND METHODS: Three PDAC cell lines were used as target cells to investigate proliferation and invasiveness. Small interfering RNA (siRNA) and the TrkB tyrosine kinase inhibitor k252a were used as TrkB/BDNF signaling inhibitors. RESULTS: All PDAC cell lines expressed TrkB and BDNF. When TrkB and BDNF were inhibited by siRNA or k252a, the invasiveness of PANC-1 and SUIT-2 cells significantly decreased. When TrkB was inhibited by siRNA or k252a, proliferation was significantly inhibited in PDAC cells. CONCLUSION: TrkB/BDNF signaling may be a new therapeutic target for PDAC. Therapies targeting TrkB/BDNF signaling may be a conclusive cancer therapy for refractory solid cancer.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Carbazóis/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Alcaloides Indólicos/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor trkB/antagonistas & inibidores , Receptor trkB/genética , Transdução de Sinais/efeitos dos fármacos
2.
Oncol Rep ; 45(3): 997-1010, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33650666

RESUMO

We previously reported that Hedgehog (Hh) signal was enhanced in gallbladder cancer (GBC) and was involved in the induction of malignant phenotype of GBC. In recent years, therapeutics that target Hh signaling have focused on molecules downstream of smoothened (SMO). The three transcription factors in the Hh signal pathway, glioma­associated oncogene homolog 1 (GLI1), GLI2, and GLI3, function downstream of SMO, but their biological role in GBC remains unclear. In the present study, the biological significance of GLI1, GLI2, and GLI3 were analyzed with the aim of developing novel treatments for GBC. It was revealed that GLI2, but not GLI1 or GLI3, was involved in the cell cycle­mediated proliferative capacity in GBC and that GLI2, but not GLI1 or GLI3, was involved in the enhanced invasive capacity through epithelial­mesenchymal transition. Further analyses revealed that GLI2 may function in mediating gemcitabine sensitivity and that GLI2 was involved in the promotion of fibrosis in a mouse xenograft model. Immunohistochemical staining of 66 surgically resected GBC tissues revealed that GLI2­high expression patients had fewer numbers of CD3+ and CD8+ tumor­infiltrating lymphocytes (TILs) and increased programmed cell death ligand 1 (PD­L1) expression in cancer cells. These results suggest that GLI2, but not GLI1 or GLI3, is involved in proliferation, invasion, fibrosis, PD­L1 expression, and TILs in GBC and could be a novel therapeutic target. The results of this study provide a significant contribution to the development of a new treatment for refractory GBC, which has few therapeutic options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...