Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Cell Rep ; 28(12): 3047-3060.e7, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533030

RESUMO

CXCR5 is a key marker of follicular helper T (TFH) cells. Using primary lymph nodes (LNs) from HIV-infected patients, we identified a population of CXCR5- CD4+ T cells with TFH-cell-like features. This CXCR5- subset becomes expanded in severe HIV infection and is characterized by the upregulation of activation markers and high PD-1 and ICOS surface expression. Integrated analyses on the phenotypic heterogeneity, functional capacity, T cell receptor (TCR) repertoire, transcriptional profile, and epigenetic state of CXCR5-PD-1+ICOS+ T cells revealed a shared clonal relationship with TFH cells. CXCR5-PD-1+ICOS+ T cells retained a poised state for CXCR5 expression and exhibited a migratory transcriptional program. TCR sequence overlap revealed a contribution of LN-derived CXCR5-PD-1+ICOS+ T cells to circulating CXCR5- CD4+ T cells with B cell help function. These data link LN pathology to circulating T cells and expand the current understanding on the diversity of T cells that regulate B cell responses during chronic inflammation.

2.
J Clin Invest ; 129(8): 3185-3200, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264971

RESUMO

T follicular helper cells (Tfh), a subset of CD4+ T cells, provide requisite help to B cells in the germinal centers (GC) of lymphoid tissue. GC Tfh are identified by high expression of the chemokine receptor CXCR5 and the inhibitory molecule PD-1. Although more accessible, blood contains lower frequencies of CXCR5+ and PD-1+ cells that have been termed circulating Tfh (cTfh). However, it remains unclear whether GC Tfh exit lymphoid tissues and populate this cTfh pool. To examine exiting cells, we assessed the phenotype of Tfh present within the major conduit of efferent lymph from lymphoid tissues into blood, the human thoracic duct. Unlike what was found in blood, we consistently identified a CXCR5-bright PD-1-bright (CXCR5BrPD-1Br) Tfh population in thoracic duct lymph (TDL). These CXCR5BrPD-1Br TDL Tfh shared phenotypic and transcriptional similarities with GC Tfh. Moreover, components of the epigenetic profile of GC Tfh could be detected in CXCR5BrPD-1Br TDL Tfh and the transcriptional imprint of this epigenetic signature was enriched in an activated cTfh subset known to contain vaccine-responding cells. Together with data showing shared TCR sequences between the CXCR5BrPD-1Br TDL Tfh and cTfh, these studies identify a population in TDL as a circulatory intermediate connecting the biology of Tfh in blood to Tfh in lymphoid tissue.

3.
Pediatr Res ; 2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31351437

RESUMO

BACKGROUND: Non-contact heart rate (HR) and respiratory rate (RR) monitoring is necessary for preterm infants due to the potential for the adhesive electrodes of conventional electrocardiogram (ECG) to cause damage to the epidermis. This study was performed to evaluate the agreement between HR and RR measurements of preterm infants using a non-contact computer vision system with comparison to measurements obtained by the ECG. METHODS: A single-centre, cross-sectional observational study was conducted in a Neonatal Unit. Ten infants and their ECG monitors were videoed using two Nikon cameras for 10 min. HR and RR measurements obtained from the non-contact system were extracted using advanced signal processing techniques and later compared to the ECG readings using Bland-Altman analysis. RESULTS: The non-contact system was able to detect an apnoea when the ECG determined movement as respirations. Although the mean bias between both methods was relatively low, the limits of agreement for HR were -8.3 to 17.4 beats per minute (b.p.m.) and for RR, -22 to 23.6 respirations per minute (r.p.m.). CONCLUSIONS: This study provides necessary data for improving algorithms to address confounding variables common to the neonatal population. Further studies investigating the robustness of the proposed system for premature infants are therefore required.

4.
Sensors (Basel) ; 19(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277484

RESUMO

For elderly persons, a fall can cause serious injuries such as a hip fracture or head injury. Here, an advanced first aid system is proposed for monitoring elderly patients with heart conditions that puts them at risk of falling and for providing first aid supplies using an unmanned aerial vehicle. A hybridized fall detection algorithm (FDB-HRT) is proposed based on a combination of acceleration and a heart rate threshold. Five volunteers were invited to evaluate the performance of the heartbeat sensor relative to a benchmark device, and the extracted data was validated using statistical analysis. In addition, the accuracy of fall detections and the recorded locations of fall incidents were validated. The proposed FDB-HRT algorithm was 99.16% and 99.2% accurate with regard to heart rate measurement and fall detection, respectively. In addition, the geolocation error of patient fall incidents based on a GPS module was evaluated by mean absolute error analysis for 17 different locations in three cities in Iraq. Mean absolute error was 1.08 × 10-5° and 2.01 × 10-5° for latitude and longitude data relative to data from the GPS Benchmark system. In addition, the results revealed that in urban areas, the UAV succeeded in all missions and arrived at the patient's locations before the ambulance, with an average time savings of 105 s. Moreover, a time saving of 31.81% was achieved when using the UAV to transport a first aid kit to the patient compared to an ambulance. As a result, we can conclude that when compared to delivering first aid via ambulance, our design greatly reduces delivery time. The proposed advanced first aid system outperformed previous systems presented in the literature in terms of accuracy of heart rate measurement, fall detection, and information messages and UAV arrival time.

5.
Diabetes ; 68(7): 1394-1402, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31127054

RESUMO

Type 1 diabetes risk can reliably be predicted by markers of autoimmunity, but approaches to prevent or modify the underlying disease process are needed. We posit this void fundamentally results from a limited understanding of immune-islet cell interactions within the pancreas and relevant immune organs, contributions of ß-cells to their own demise, and epigenetic predispositions affecting both immune and islet cells. Because biopsy of the human pancreas and pancreatic lymph nodes carries risk and the pancreas begins to autodigest soon after death, detailed cellular and molecular phenotyping of the human type 1 diabetes pancreas is lacking, limiting our understanding of the mechanisms of ß-cell loss. To address these challenges, the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases established the Human Pancreas Analysis Program (HPAP) to procure human type 1 diabetes pancreata for an extensive array of tissue-based, cellular, and epigenetic assays aimed at critical knowledge gaps in our understanding of the local immune attack and loss of ß-cells. In this Methodology Review, we describe how HPAP is performing detailed islet and immune cell phenotyping and creating publicly available data sets with the goals of an improved understanding of type 1 diabetes and the development of more effective treatments to prevent or reverse the disease.

6.
NMR Biomed ; 32(8): e4107, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31112351

RESUMO

The current standard for noninvasive imaging of acute rejection consists of X-ray/CT, which derive their contrast from changes in ventilation, inflammation and edema, as well as remodeling during rejection. We propose the use of hyperpolarized [1-13 C] pyruvate MRI-which provides real-time metabolic assessment of tissue-as an early biomarker for tissue rejection. In this preliminary study, we used µCT-derived parameters and HP 13 C MR-derived biomarkers to predict rejection in an orthotopic left lung transplant model in both allogeneic and syngeneic rats. On day 3, the normalized lung density-a parameter that accounts for both lung volume (mL) and density (HU)-was -0.335 (CI: -0.598, -0.073) and - 0.473 (CI: -0.726, -0.220) for the allograft and isograft, respectively (not significant, 0.40). The lactate-to-pyruvate ratios-derived from the HP 13 C MRI-for the allograft and isograft were 0.200 (CI: 0.161, 0.240) and 0.114 (CI: 0.074, 0.153), respectively (significant, 0.020). Both techniques showed tissue rejection on day 7. A separate sub-study revealed CD8+ cells as the primary source of the lactate-to-pyruvate signal. Our study suggests that hyperpolarized (HP) [1-13 C] pyruvate MRI is a promising early biomarker for tissue rejection that provides metabolic assessment in real time based on changes in cellularity and metabolism of lung tissue and the infiltrating inflammatory cells, and may be able to predict tissue rejection earlier than X-ray/CT.

7.
Nat Immunol ; 20(6): 677-686, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110312

RESUMO

Consumption of a high-energy Western diet triggers mild adaptive ß cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of ß cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of ß cells, but not that of α cells, leading to enlarged ß cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of ß cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse ß cell failure in patients with diabetes.


Assuntos
Células Secretoras de Insulina/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Animais , Proliferação de Células , Ciclina D2/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Obesidade/tratamento farmacológico , Parabiose , Ligação Proteica , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
8.
J Vis Exp ; (145)2019 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30958478

RESUMO

Caenorhabditis elegans (C. elegans), a free-living nematode, has emerged as an attractive model to study host-pathogen interactions. The presented protocol uses this model to determine the pathogenicity caused by the mitis group streptococci via the production of H2O2. The mitis group streptococci are an emerging threat that cause many human diseases such as bacteremia, endocarditis, and orbital cellulitis. Described here is a protocol to determine the survival of these worms in response to H2O2 produced by this group of pathogens. Using the gene skn-1 encoding for an oxidative stress response transcription factor, it is shown that this model is important for identifying host genes that are essential against streptococcal infection. Furthermore, it is shown that activation of the oxidative stress response can be monitored in the presence of these pathogens using a transgenic reporter worm strain, in which SKN-1 is fused to green fluorescent protein (GFP). These assays provide the opportunity to study the oxidative stress response to H2O2 derived by a biological source as opposed to exogenously added reactive oxygen species (ROS) sources.

9.
Sci Rep ; 9(1): 3884, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846718

RESUMO

Electrostatic interactions play important roles in the formation and stability of viruses and virus-like particles (VLPs) through processes that often involve added, or naturally occurring, multivalent ions. Here, we investigate the electrostatic or osmotic pressure acting on the proteinaceous shell of a generic model of VLPs, comprising a charged outer shell and a metallic nanoparticle core, coated by a charged layer and bathed in an aqueous electrolyte solution. Motivated by the recent studies accentuating the role of multivalent ions for the stability of VLPs, we focus on the effects of multivalent cations and anions in an otherwise monovalent ionic solution. We perform extensive Monte-Carlo simulations based on appropriate Coulombic interactions that consistently take into account the effects of salt screening, the dielectric polarization of the metallic core, and the strong-coupling electrostatics due to multivalent ions. We specifically study the intricate roles these factors play in the electrostatic stability of the model VLPs. It is shown that while the insertion of a metallic nanoparticle by itself can produce negative, inward-directed, pressure on the outer shell, addition of only a small amount of multivalent counterions can robustly engender negative pressures, enhancing the VLP stability across a wide range of values for the system parameters.

10.
EMBO Rep ; 20(4)2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30787043

RESUMO

By serving as intermediaries between cellular metabolism and the bioenergetic demands of proliferation, endolysosomes allow cancer cells to thrive under normally detrimental conditions. Here, we show that an endolysosomal TRP channel, TRPML1, is necessary for the proliferation of cancer cells that bear activating mutations in HRAS Expression of MCOLN1, which encodes TRPML1, is significantly elevated in HRAS-positive tumors and inversely correlated with patient prognosis. Concordantly, MCOLN1 knockdown or TRPML1 inhibition selectively reduces the proliferation of cancer cells that express oncogenic, but not wild-type, HRAS Mechanistically, TRPML1 maintains oncogenic HRAS in signaling-competent nanoclusters at the plasma membrane by mediating cholesterol de-esterification and transport. TRPML1 inhibition disrupts the distribution and levels of cholesterol and thereby attenuates HRAS nanoclustering and plasma membrane abundance, ERK phosphorylation, and cell proliferation. These findings reveal a selective vulnerability of HRAS-driven cancers to TRPML1 inhibition, which may be leveraged as an actionable therapeutic strategy.

11.
Am J Transplant ; 19(6): 1852-1858, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30801971

RESUMO

Islet cell transplantation is curative therapy for patients with complicated autoimmune type 1 diabetes (T1D). We report the diagnostic potential of circulating transplant islet-specific exosomes to noninvasively distinguish pancreatic ß cell injury secondary to recurrent autoimmunity vs immunologic rejection. A T1D patient with hypoglycemic unawareness underwent islet transplantation and maintained normoglycemia until posttransplant day 1098 before requiring exogenous insulin. Plasma analysis showed decreased donor islet exosome quantities on day 1001, before hyperglycemia onset. This drop in islet exosome quantity signified islet injury, but did not distinguish injury type. However, analysis of purified transplant islet exosome cargoes showed decrease in insulin-containing exosomes, but not glucagon-containing exosomes, indicating selective destruction of transplanted ß cells secondary to recurrent T1D autoimmunity. Furthermore, donor islet exosome cargo analysis showed time-specific increase in islet autoantigen, glutamic acid decarboxylase 65 (GAD65), implicated in T1D autoimmunity. Time-matched analysis of plasma transplant islet exosomes in 3 control subjects undergoing islet cell transplantation failed to show changes in islet exosome quantities or intraexosomal cargo expression of insulin, glucagon, and GAD65. This is the first report of noninvasive diagnosis of recurrent autoimmunity after islet cell transplantation, suggesting that transplant tissue exosome platform may serve as a biomarker in islet transplant diagnostics.

12.
Soft Matter ; 15(10): 2216-2222, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30758030

RESUMO

We analyze the transverse intersubstrate Casimir-like force, arising as a result of thermal fluctuations of the liquid crystalline layers of a smectic-A film confined between two planar substrates in a bookshelf geometry, in which the equidistant smectic layers are placed perpendicular to the bounding surfaces. We discuss the variation of the interaction force as a function of the intersubstrate separation in the presence of surface anchoring to the substrates, showing that the force induced by confined fluctuations is attractive and depends on the penetration length as well as the layer spacing. The strongest effect occurs for tightly confined fluctuations, in which the surface anchoring energy is set to infinity, where the force per area scales linearly with the thermal energy and inversely with the fourth power of the intersubstrate separation. By reducing the strength of the surface anchoring energy, the force first becomes weaker in magnitude but then increases in magnitude as the surface anchoring strength is further reduced down to zero, in which case the force tends to that obtained in the limit of strong anchoring.

13.
Cell Metab ; 29(3): 769-783.e4, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30713110

RESUMO

The interaction between the immune system and endocrine cells in the pancreas is crucial for the initiation and progression of type 1 diabetes (T1D). Imaging mass cytometry (IMC) enables multiplexed assessment of the abundance and localization of more than 30 proteins on the same tissue section at 1-µm resolution. Herein, we have developed a panel of 33 antibodies that allows for the quantification of key cell types including pancreatic exocrine cells, islet cells, immune cells, and stromal components. We employed this panel to analyze 12 pancreata obtained from donors with clinically diagnosed T1D and 6 pancreata from non-diabetic controls. In the pancreata from donors with T1D, we simultaneously visualized significant alterations in islet architecture, endocrine cell composition, and immune cell presentation. Indeed, we demonstrate the utility of IMC to investigate complex events on the cellular level that will provide new insights on the pathophysiology of T1D.

14.
J Clin Invest ; 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30352048

RESUMO

The loss of insulin-secreting ß cells is characteristic among type I and type II diabetes. Stimulating proliferation to expand sources of ß cells for transplantation remains a challenge because adult ß cells do not proliferate readily. The cell cycle inhibitor p57 has been shown to control cell division in human ß cells. Expression of p57 is regulated by the DNA methylation status of the imprinting control region 2 (ICR2), which is commonly hypomethylated in Beckwith-Wiedemann syndrome patients who exhibit massive ß cell proliferation. We hypothesized that targeted demethylation of the ICR2 using a transcription activator-like effector protein fused to the catalytic domain of TET1 (ICR2-TET1) would repress p57 expression and promote cell proliferation. We report here that overexpression of ICR2-TET1 in human fibroblasts reduces p57 expression levels and increases proliferation. Furthermore, human islets overexpressing ICR2-TET1 exhibit repression of p57 with concomitant upregulation of Ki-67 while maintaining glucose-sensing functionality. When transplanted into diabetic, immunodeficient mice, the epigenetically edited islets show increased ß cell replication compared with control islets. These findings demonstrate that epigenetic editing is a promising tool for inducing ß cell proliferation, which may one day alleviate the scarcity of transplantable ß cells for the treatment of diabetes.

15.
J Chem Phys ; 149(13): 134702, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292214

RESUMO

We study the spatial and orientational distribution of charged nanorods (rodlike counterions) as well as the effective interaction mediated by them between two plane-parallel surfaces that carry fixed (quenched) heterogeneous charge distributions. The nanorods are assumed to have an internal charge distribution, specified by a multivalent monopolar moment and a finite quadrupolar moment, and the quenched surface charge is assumed to be randomly distributed with equal mean and variance on the two surfaces. While equally charged surfaces are known to repel within the traditional mean-field theories, the presence of multivalent counterions has been shown to cause attractive interactions between uniformly charged surfaces due to the prevalence of strong electrostatic couplings that grow rapidly with the counterion valency. We show that the combined effects due to electrostatic correlations (caused by the coupling between the mean surface field and the multivalent, monopolar, charge valency of counterions) as well as the disorder-induced interactions (caused by the coupling between the surface disorder field and the quadrupolar moment of counterions) lead to much stronger attractive interactions between two randomly charged surfaces. The interaction profile turns out to be a nonmonotonic function of the intersurface separation, displaying an attractive minimum at relatively small separations, where the ensuing attraction can exceed the maximum strong-coupling attraction (produced by multivalent monopolar counterions between uniformly charged surfaces) by more than an order of magnitude.

16.
PLoS One ; 13(8): e0202233, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114261

RESUMO

The mitis group, a member of the genetically diverse viridans group streptococci, predominately colonizes the human oropharynx. This group has been shown to cause a wide range of infectious complications in humans, including bacteremia in patients with neutropenia, orbital cellulitis and infective endocarditis. Hydrogen peroxide (H2O2) has been identified as a virulence factor produced by this group of streptococci. More importantly, it has been shown that Streptococcus oralis and S. mitis induce epithelial cell and macrophage death via the production of H2O2. Previously, H2O2 mediated killing was observed in the nematode Caenorhabditis elegans in response to S. oralis and S. mitis. The genetically tractable model organism C. elegans is an excellent system to study mechanisms of pathogenicity and stress responses. Using this model, we observed rapid H2O2 mediated killing of the worms by S. gordonii in addition to S. mitis and S. oralis. Furthermore, we observed colonization of the intestine of the worms when exposed to S. gordonii suggesting the involvement of an infection-like process. In response to the H2O2 produced by the mitis group, we demonstrate the oxidative stress response is activated in the worms. The oxidative stress response transcription factor SKN-1 is required for the survival of the worms and provides protection against H2O2 produced by S. gordonii. We show during infection, H2O2 is required for the activation of SKN-1 and is mediated via the p38-MAPK pathway. The activation of the p38 signaling pathway in the presence of S. gordonii is not mediated by the endoplasmic reticulum (ER) transmembrane protein kinase IRE-1. However, IRE-1 is required for the survival of worms in response to S. gordonii. These finding suggests a parallel pathway senses H2O2 produced by the mitis group and activates the phosphorylation of p38. Additionally, the unfolded protein response plays an important role during infection.

17.
Ann Intern Med ; 169(5): 273-281, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30083748

RESUMO

Background: Organs from hepatitis C virus (HCV)-infected deceased donors are often discarded. Preliminary data from 2 small trials, including THINKER-1 (Transplanting Hepatitis C kidneys Into Negative KidnEy Recipients), suggested that HCV-infected kidneys could be safely transplanted into HCV-negative patients. However, intermediate-term data on quality of life and renal function are needed to counsel patients about risk. Objective: To describe 12-month HCV treatment outcomes, estimated glomerular filtration rate (eGFR), and quality of life for the 10 kidney recipients in THINKER-1 and 6-month data on 10 additional recipients. Design: Open-label, nonrandomized trial. (ClinicalTrials.gov: NCT02743897). Setting: Single center. Participants: 20 HCV-negative transplant candidates. Intervention: Participants underwent transplant with kidneys infected with genotype 1 HCV and received elbasvir-grazoprevir on posttransplant day 3. Measurements: The primary outcome was HCV cure. Exploratory outcomes included 1) RAND-36 Physical Component Summary (PCS) and Mental Component Summary (MCS) quality-of-life scores at enrollment and after transplant, and 2) posttransplant renal function, which was compared in a 1:5 matched sample with recipients of HCV-negative kidneys. Results: The mean age of THINKER participants was 56.3 years (SD, 6.7), 70% were male, and 40% were black. All 20 participants achieved HCV cure. Hepatic and renal complications were transient or were successfully managed. Mean PCS and MCS quality-of-life scores decreased at 4 weeks; PCS scores then increased above pretransplant values, whereas MCS scores returned to baseline values. Estimated GFRs were similar between THINKER participants and matched recipients of HCV-negative kidneys at 6 months (median, 67.5 vs. 66.2 mL/min/1.73 m2; 95% CI for between-group difference, -4.2 to 7.5 mL/min/1.73 m2) and 12 months (median, 72.8 vs. 67.2 mL/min/1.73 m2; CI for between-group difference, -7.2 to 9.8 mL/min/1.73 m2). Limitation: Small trial. Conclusion: Twenty HCV-negative recipients of HCV-infected kidneys experienced HCV cure, good quality of life, and excellent renal function. Kidneys from HCV-infected donors may be a valuable transplant resource. Primary Funding Source: Merck.

18.
Nat Commun ; 9(1): 2681, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992946

RESUMO

GLIS3 mutations are associated with type 1, type 2, and neonatal diabetes, reflecting a key function for this gene in pancreatic ß-cell biology. Previous attempts to recapitulate disease-relevant phenotypes in GLIS3-/- ß-like cells have been unsuccessful. Here, we develop a "minimal component" protocol to generate late-stage pancreatic progenitors (PP2) that differentiate to mono-hormonal glucose-responding ß-like (PP2-ß) cells. Using this differentiation platform, we discover that GLIS3-/- hESCs show impaired differentiation, with significant death of PP2 and PP2-ß cells, without impacting the total endocrine pool. Furthermore, we perform a high-content chemical screen and identify a drug candidate that rescues mutant GLIS3-associated ß-cell death both in vitro and in vivo. Finally, we discovered that loss of GLIS3 causes ß-cell death, by activating the TGFß pathway. This study establishes an optimized directed differentiation protocol for modeling human ß-cell disease and identifies a drug candidate for treating a broad range of GLIS3-associated diabetic patients.

19.
Sci Immunol ; 3(24)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858286

RESUMO

Current paradigms of CD8+ T cell-mediated protection in HIV infection center almost exclusively on studies of peripheral blood, which is thought to provide a window into immune activity at the predominant sites of viral replication in lymphoid tissues (LTs). Through extensive comparison of blood, thoracic duct lymph (TDL), and LTs in different species, we show that many LT memory CD8+ T cells bear phenotypic, transcriptional, and epigenetic signatures of resident memory T cells (TRMs). Unlike their circulating counterparts in blood or TDL, most of the total and follicular HIV-specific CD8+ T cells in LTs also resemble TRMs Moreover, high frequencies of HIV-specific CD8+ TRMs with skewed clonotypic profiles relative to matched blood samples are present in LTs of individuals who spontaneously control HIV replication in the absence of antiretroviral therapy (elite controllers). Single-cell RNA sequencing analysis confirmed that HIV-specific TRMs are enriched for effector-related immune genes and signatures compared with HIV-specific non-TRMs in elite controllers. Together, these data indicate that previous studies in blood have largely failed to capture the major component of HIV-specific CD8+ T cell responses resident within LTs.

20.
Transplantation ; 102(8): 1223-1229, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29781950

RESUMO

Beta cell replacement has the potential to restore euglycemia in patients with insulin-dependent diabetes. Although great progress has been made in establishing allogeneic islet transplantation from deceased donors as the standard of care for those with the most labile diabetes, it is also clear that the deceased donor organ supply cannot possibly treat all those who could benefit from restoration of a normal beta cell mass, especially if immunosuppression were not required. Against this background, the International Pancreas and Islet Transplant Association in collaboration with the Harvard Stem Cell Institute, the Juvenile Diabetes Research Foundation (JDRF), and the Helmsley Foundation held a 2-day Key Opinion Leaders Meeting in Boston in 2016 to bring together experts in generating and transplanting beta cells derived from stem cells. The following summary highlights current technology, recent significant breakthroughs, unmet needs and roadblocks to stem cell-derived beta cell therapies, with the aim of spurring future preclinical collaborative investigations and progress toward the clinical application of stem cell-derived beta cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA