Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(16): 18866-18876, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35418224

RESUMO

Stretchable and flexible electronics has attracted broad attention over the last years. Nanocomposites based on elastomers and carbon nanotubes are a promising material for soft electronic applications. Despite the fact that single-walled carbon nanotube (SWCNT) based nanocomposites often demonstrate superior properties, the vast majority of the studies were devoted to those based on multiwalled carbon nanotubes (MWCNTs) mainly because of their higher availability and easier processing procedures. Moreover, high weight concentrations of MWCNTs are often required for high performance of the nanocomposites in electronic applications. Inspired by the recent drop in the SWCNT price, we have focused on fabrication of elastic nanocomposites with very low concentrations of SWCNTs to reduce the cost of nanocomposites further. In this work, we use a fast method of coagulation (antisolvent) precipitation to fabricate elastic composites based on thermoplastic polyurethane (TPU) and SWCNTs with a homogeneous distribution of SWCNTs in bulk TPU. Applicability of the approach is confirmed by extra low percolation threshold of 0.006 wt % and, as a consequence, by the state-of-the-art performance of fabricated elastic nanocomposites at very low SWCNT concentrations for strain sensing (gauge factor of 82 at 0.05 wt %) and EMI shielding (efficiency of 30 dB mm-1 at 0.01 wt %).

2.
Small ; : e2200476, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315215

RESUMO

Advances in material science, bioelectronic, and implantable medicine combined with recent requests for eco-friendly materials and technologies inevitably formulate new challenges for nano- and micropatterning techniques. Overall, the importance of creating micro- and nanostructures is motivated by a large manifold of fundamental and applied properties accessible only at the nanoscale. Lithography is a crucial family of fabrication methods to create prototypes and produce devices on an industrial scale. The pure trend in the miniaturization of critical electronic semiconducting components has been recently enhanced by implementing bio-organic systems in electronics. So far, significant efforts have been made to find novel lithographic approaches and develop old ones to reach compatibility with delicate bio-organic systems and minimize the impact on the environment. Herein, such delicate materials and sophisticated patterning techniques are briefly reviewed.

3.
Adv Sci (Weinh) ; 9(12): e2200217, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35187847

RESUMO

Following the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO2 mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals. Unique features of the Boudouard reaction coupled with CO-driven catalyst engineering ensure not only suppression of the second layer growth but also provide a simple and reliable technique for surface cleaning. Aside from being a novel carbon source, carbon monoxide ensures peculiar modification of catalyst and in general opens avenues for breakthrough graphene-catalyst composite production.

4.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684990

RESUMO

We demonstrate flexible red light-emitting diodes based on axial GaPAs/GaP heterostructured nanowires embedded in polydimethylsiloxane membranes with transparent electrodes involving single-walled carbon nanotubes. The GaPAs/GaP axial nanowire arrays were grown by molecular beam epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-walled carbon nanotube films has the main electroluminescence line at 670 nm. Membrane-based light-emitting diodes (LEDs) were compared with GaPAs/GaP NW array LED devices processed directly on Si growth substrate revealing similar electroluminescence properties. Demonstrated membrane-based red LEDs are opening an avenue for flexible full color inorganic devices.

5.
J Phys Chem Lett ; 12(39): 9672-9676, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34590867

RESUMO

The architecture of transparent contacts is of utmost importance for creation of efficient flexible light-emitting devices (LEDs) and other deformable electronic devices. We successfully combined the newly synthesized transparent and durable silicone rubbers and the semiconductor materials with original fabrication methods to design LEDs and demonstrate their significant flexibility. We developed electrodes based on a composite GaP nanowire-phenylethyl-functionalized silicone rubber membrane, improved with single-walled carbon nanotube films for a hybrid poly(ethylene oxide)-metal-halide perovskite (CsPbBr3) flexible green LED. The proposed approach provides a novel platform for fabrication of flexible hybrid optoelectronic devices.

6.
Nanomaterials (Basel) ; 11(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200237

RESUMO

We propose and demonstrate both flexible and stretchable blue light-emitting diodes based on core/shell InGaN/GaN quantum well microwires embedded in polydimethylsiloxane membranes with strain-insensitive transparent electrodes involving single-walled carbon nanotubes. InGaN/GaN core-shell microwires were grown by metal-organic vapor phase epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-walled carbon nanotube films can stand up to 20% stretching while maintaining efficient operation. Membrane-based LEDs show less than 15% degradation of electroluminescence intensity after 20 cycles of stretching thus opening an avenue for highly deformable inorganic devices.

7.
Materials (Basel) ; 14(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066488

RESUMO

This review is dedicated to versatile silicone rubber composites based on carbon nanotube/graphene (CNT/G) hybrid fillers. Due to their unique mechanical, electrical, thermal, and biological properties, such composites have enormous potential for medical, environmental, and electronics applications. In the scope of this paper, we have explored CNT/graphene/silicone composites with a different morphology, analyzed the synergistic effect of hybrid fillers on various properties of silicone composites, and observed the existing approaches for the fabrication of hybrid composites with a seamless, assembled, and/or foamed structure. In conclusion, current challenges and future prospects for silicone composites based on CNTs and graphene have been thoroughly discussed.

8.
Nanotechnology ; 32(9): 095206, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33197904

RESUMO

We demonstrate that single-walled carbon nanotube (SWCNT) membranes can be successfully utilized as nanometer-thick substrates for enhanced visualization and facilitated study of individual nanoparticles. As model objects, we transfer optically resonant 200 nm silicon nanoparticles onto pristine and ethanol-densified SWCNT membranes by the femtosecond laser printing method. We image nanoparticles by scanning electron and bright-field optical microscopy, and characterize by linear and Raman scattering spectroscopy. The use of a pristine SWCNT membrane allows to achieve an order-of-magnitude enhancement of the optical contrast of the nanoparticle bright field image over the results shown in the case of the glass substrate use. The observed optical contrast enhancement is in agreement with the spectrophotometric measurements showing an extremely low specular reflectance of the pristine membrane (≤0.1%). Owing to the high transparency, negligibly small reflectance and thickness, SWCNT membranes offer a variety of perspective applications in nanophotonics, bioimaging and synchrotron radiation studies.

9.
Faraday Discuss ; 227: 163-170, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325929

RESUMO

III-VI post-transition metal chalcogenides (InSe and GaSe) are a new class of layered semiconductors, which feature a strong variation of size and type of their band gaps as a function of number of layers (N). Here, we investigate exfoliated layers of InSe and GaSe ranging from bulk crystals down to monolayer, encapsulated in hexagonal boron nitride, using Raman spectroscopy. We present the N-dependence of both intralayer vibrations within each atomic layer, as well as of the interlayer shear and layer breathing modes. A linear chain model can be used to describe the evolution of the peak positions as a function of N, consistent with first principles calculations.

10.
Food Chem ; 345: 128747, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33307429

RESUMO

Determination of food doneness remains a challenge for automation in the cooking industry. The complex physicochemical processes that occur during cooking require a combination of several methods for their control. Herein, we utilized an electronic nose and computer vision to check the cooking state of grilled chicken. Thermogravimetry, differential mobility analysis, and mass spectrometry were employed to deepen the fundamental insights towards the grilling process. The results indicated that an electronic nose could distinguish the odor profile of the grilled chicken, whereas computer vision could identify discoloration of the chicken. The integration of these two methods yields greater selectivity towards the qualitative determination of chicken doneness. The odor profile is matched with detected water loss, and the release of aromatic and sulfur-containing compounds during cooking. This work demonstrates the practicability of the developed technique, which we compared with a sensory evaluation, for better deconvolution of food state during cooking.


Assuntos
Computadores , Culinária , Nariz Eletrônico , Carne/análise , Animais , Galinhas , Água/análise
11.
RSC Adv ; 11(48): 30270-30282, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35480252

RESUMO

An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH3), nitrogen dioxide (NO2), hydrogen sulphide (H2S), and benzene (C6H6). Among them, ammonia (NH3) and nitrogen dioxide (NO2) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH3) and nitrogen dioxide (NO2), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset.

12.
ACS Appl Mater Interfaces ; 12(50): 56135-56150, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270411

RESUMO

Information about the surrounding atmosphere at a real timescale significantly relies on available gas sensors to be efficiently combined into multisensor arrays as electronic olfaction units. However, the array's performance is challenged by the ability to provide orthogonal responses from the employed sensors at a reasonable cost. This issue becomes more demanded when the arrays are designed under an on-chip paradigm to meet a number of emerging calls either in the internet-of-things industry or in situ noninvasive diagnostics of human breath, to name a few, for small-sized low-powered detectors. The recent advances in additive manufacturing provide a solid top-down background to develop such chip-based gas-analytical systems under low-cost technology protocols. Here, we employ hydrolytically active heteroligand complexes of metals as ink components for microplotter patterning a multioxide combinatorial library of chemiresistive type at a single chip equipped with multiple electrodes. To primarily test the performance of such a multisensor array, various semiconducting oxides of the p- and n-conductance origins based on pristine and mixed nanocrystalline MnOx, TiO2, ZrO2, CeO2, ZnO, Cr2O3, Co3O4, and SnO2 thin films, of up to 70 nm thick, have been printed over hundred µm areas and their micronanostructure and fabrication conditions are thoroughly assessed. The developed multioxide library is shown to deliver at a range of operating temperatures, up to 400 °C, highly sensitive and highly selective vector signals to different, but chemically akin, alcohol vapors (methanol, ethanol, isopropanol, and n-butanol) as examples at low ppm concentrations when mixed with air. The suggested approach provides us a promising way to achieve cost-effective and well-performed electronic olfaction devices matured from the diverse chemiresistive responses of the printed nanocrystalline oxides.

13.
ACS Appl Mater Interfaces ; 12(49): 55141-55147, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33249829

RESUMO

We propose a novel strategy to enhance optoelectrical properties of single-walled carbon nanotube (SWCNT) films for transparent electrode applications by film patterning. First, we theoretically considered the effect of the conducting pattern geometry on the film quality factor and then experimentally examined the calculated structures. We extend these results to show that the best characteristics of patterned SWCNT films can be achieved using the combination of initial film properties: low transmittance and high conductivity. The proposed strategy allows the patterned layers of SWCNTs to outperform the widely used indium-tin-oxide electrodes on both flexible and rigid substrates.

14.
J Phys Chem Lett ; 11(14): 5563-5568, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32564599

RESUMO

Recent studies have shown that charge transport interlayers with low gas permeability can increase the operational lifetime of perovskite solar cells serving as a barrier for migration of volatile decomposition products from the photoactive layer. Herein we present a hybrid hole transport layer (HTL) comprised of p-type polytriarylamine (PTAA) polymer and vanadium(V) oxide (VOx). Devices with PTAA/VOx top HTL reach up to 20% efficiency and demonstrate negligible degradation after 4500 h of light soaking, whereas reference cells using PTAA/MoOx as HTL lose ∼50% of their initial efficiency under the same aging conditions. It was shown that the main origin of the enhanced device stability lies in the higher tolerance of VOx toward MAPbI3 compared to the MoOx interlayer, which tends to facilitate perovskite decomposition. Our results demonstrate that the application of PTAA/VOx hybrid HTL enables long-term operational stability of perovskite solar cells, thus bringing them closer to commercial applications.

15.
Adv Healthc Mater ; 9(12): e2000377, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32378358

RESUMO

A sensor array based on heterojunctions between semiconducting organic layers and single walled carbon nanotube (SWCNT) films is produced to explore applications in breathomics, the molecular analysis of exhaled breath. The array is exposed to gas/volatiles relevant to specific diseases (ammonia, ethanol, acetone, 2-propanol, sodium hypochlorite, benzene, hydrogen sulfide, and nitrogen dioxide). Then, to evaluate its capability to operate with real relevant biological samples the array is exposed to human breath exhaled from healthy subjects. Finally, to provide a proof of concept of its diagnostic potential, the array is exposed to exhaled breath samples collected from subjects with chronic obstructive pulmonary disease (COPD), an airway chronic inflammatory disease not yet investigated with CNT-based sensor arrays, and breathprints are compared with those obtained from of healthy subjects. Principal component analysis shows that the sensor array is able to detect various target gas/volatiles with a clear fingerprint on a 2D subspace, is suitable for breath profiling in exhaled human breath, and is able to distinguish subjects with COPD from healthy subjects based on their breathprints. This classification ability is further improved by selecting the most responsive sensors to nitrogen dioxide, a potential biomarker of COPD.


Assuntos
Biomarcadores , Testes Respiratórios , Doença Pulmonar Obstrutiva Crônica , Expiração , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Semicondutores
16.
Sensors (Basel) ; 20(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326578

RESUMO

Novel bio-materials, like chitosan and its derivatives, appeal to finding a new niche in room temperature gas sensors, demonstrating not only a chemoresistive response, but also changes in mechanical impedance due to vapor adsorption. We determined the coefficients of elasticity and viscosity of chitosan acetate films in air, ammonia, and water vapors by acoustic spectroscopy. The measurements were carried out while using a resonator with a longitudinal electric field at the different concentrations of ammonia (100-1600 ppm) and air humidity (20-60%). It was established that, in the presence of ammonia, the longitudinal and shear elastic modules significantly decreased, whereas, in water vapor, they changed slightly. At that, the viscosity of the films increased greatly upon exposure to both vapors. We found that the film's conductivity increased by two and one orders of magnitude, respectively, in ammonia and water vapors. The effect of analyzed vapors on the resonance properties of a piezoelectric resonator with a lateral electric field that was loaded by a chitosan film on its free side was also experimentally studied. In these vapors, the parallel resonance frequency and maximum value of the real part of the electrical impedance decreased, especially in ammonia. The results of a theoretical analysis of the resonance properties of such a sensor in the presence of vapors turned out to be in a good agreement with the experimental data. It has been also found that with a growth in the concentration of the studied vapors, a decrease in the elastic constants, and an increase in the viscosity factor and conductivity lead to reducing the parallel resonance frequency and the maximum value of the real part of the electric impedance of the piezoelectric resonator with a lateral electric field that was loaded with a chitosan film. This leads to an increase in the sensitivity of such a sensor during exposure to these gas vapors.

17.
J Phys Chem Lett ; 11(2): 504-509, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31892279

RESUMO

Single-walled carbon nanotubes (SWCNTs) possess extraordinary physical and chemical properties. Thin films of randomly oriented SWCNTs have great potential in many opto-electro-mechanical applications. However, good adhesion of SWCNT films with a substrate material is pivotal for their practical use. Here, for the first time, we systematically investigate the adhesion properties of SWCNT thin films with commonly used substrates such as glass (SiO2), indium tin oxide (ITO), crystalline silicon (C-Si), amorphous silicon (a-Si:H), zirconium oxide (ZrO2), platinum (Pt), polydimethylsiloxane (PDMS), and SWCNTs for self-adhesion using atomic force microscopy. By comparing the results obtained in air and inert Ar atmospheres, we observed that the surface state of the materials greatly contributes to their adhesion properties. We found that the SWCNT thin films have stronger adhesion in an inert atmosphere. The adhesion in the air can be greatly improved by a fluorination process. Experimental and theoretical analyses suggest that adhesion depends on the atmospheric conditions and surface functionalization.

18.
J Phys Chem Lett ; 10(21): 6962-6966, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31637916

RESUMO

A machine learning technique, namely, support vector regression, is implemented to enhance single-walled carbon nanotube (SWCNT) thin-film performance for transparent and conducting applications. We collected a comprehensive data set describing the influence of synthesis parameters (temperature and CO2 concentration) on the equivalent sheet resistance (at 90% transmittance in the visible light range) for SWCNT films obtained by a semi-industrial aerosol (floating-catalyst) CVD with CO as a carbon source and ferrocene as a catalyst precursor. The predictive model trained on the data set shows principal applicability of the method for refining synthesis conditions toward the advanced optoelectronic performance of multiparameter processes such as nanotube growth. Further doping of the improved carbon nanotube films with HAuCl4 results in the equivalent sheet resistance of 39 Ω/□-one of the lowest values achieved so far for SWCNT films.

19.
J Phys Chem Lett ; 10(14): 3961-3965, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31265305

RESUMO

We propose a novel, scalable, and simple method for aerosol doping of single-walled carbon nanotube (SWCNT) films. This method is based on aerosolization of a dopant solution (HAuCl4 in ethanol) and time-controlled deposition of uniform aerosol particles on the nanotube film surface. The approach developed allows fine-tuning of the SWCNT work function in the range of 4.45 (for pristine nanotubes) to 5.46 eV, controllably varying the sheet resistance of the films from 79 to 3.2 Ω/□ for the SWCNT films with 50% transmittance (at 550 nm). This opens a new avenue for traditional and flexible optoelectronics, both to replace existing indium-tin oxide electrodes and to develop novel applications of the highly conductive transparent films.

20.
ACS Appl Mater Interfaces ; 11(30): 27327-27334, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31266298

RESUMO

Soft, flexible, and stretchable electronic devices provide novel integration opportunities for wearable and implantable technologies. Despite the existing efforts to endow electronics with the capability of large deformation, the main technological challenge is still in the absence of suitable materials for the manufacturing of stretchable electronic circuits and devices with active (sensitive) and passive (stable) components. Here, we present a universal material, based on single-walled carbon nanotube (SWCNT) films deposited on a polydimethylsiloxane (PDMS) substrate, which can act as a material being both sensitive and insensitive to strain. The diverse performance of SWCNT/PDMS structures was achieved by two simple dry-transfer fabrication approaches: SWCNT film deposition onto the as-prepared PDMS and on the prestretched PDMS surface. The correlation between applied strain, microstructural evolution, and electro-optical properties is discussed on the basis of both experimental and computational results. The SWCNT/PDMS material with the mechanically tunable performance has a small relative resistance change from 0.05 to 0.07, while being stretched from 10 to 40% (stable electrode applications). A high sensitivity of 20.1 of the SWCNT/PDMS structures at a 100% strain was achieved (strain sensing applications). Our SWCNT/PDMS structures have superior transparency and conductivity compared to the ones reported previously, including the SWCNT/PDMS structures, obtained by wet processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...