Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 192(11): 689, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030599

RESUMO

Flooding in urban basins is a major natural catastrophe that leads to many causalities of life and property. The semi-urbanized Koraiyar River basin in Tamil Nadu has important cities like Tiruchirappalli and many towns located in it. The basin unfailingly experiences a flood event in almost every decade. It is anticipated that the basin will undergo rapid unplanned urbanization in the years to come. Such fast and erratic urban developments will only increase the risk of urban floods ultimately resulting in loss of human lives and extensive damages to property and infrastructure. The effects of urbanization can be quantified in the form of land use land cover (LULC) changes. The LULC change and its impacts on urban runoff are studied for the continuous 30-year present time period of (1986-2016) to reliably predict the anticipated impact in the future time period of (2026-2036). The analysis of land cover patterns over the years shows that urbanization is more prevalent in the northern part of the basin of the chosen study area when compared with the other regions. The extreme rainfall events that occurred in the past, and the probable future LULC changes, as well as their influence on urban runoff, are studied together in the current study. In order to minimize flood damages due to these changing land use conditions, certain preventive and protective measures have to be adopted at the earliest. There are some inevitable limitations while applying traditional measures in flood modeling studies. This investigative work considers a case study on the ungauged Koraiyar floodplains. The spatial scale risk assessment is assessed by coupling geographic information systems, remote sensing, hydrologic, and hydraulic modeling, to estimate the flood hazard probabilities in the Koraiyar basin. The maximum flood flow is generated from the Hydrologic Engineering Centre-Hydrologic Modeling System (HEC-HMS), the hydrologic model adopted in the present study. The maximum flood flow is given as input to the Hydrologic Engineering Centre-River Analysis System (HEC-RAS), an effective hydraulic model that generates water depth and flood spread area in the basin. The flood depth and hazard maps are derived for 2, 5, 10, 50, and 100-year return periods. From the analysis, it is observed that the minimum flood depth is less than 1.2 m to a maximum of 4.7 m for the 100-year return period of past to predicted future years. The simulated results show that the maximum flood depth of 4.7 m with flood hazard area of 4.32% is identified as high hazard zones from the years 1986-2036, located in the center of the basin in Tiruchirappalli city. The very high hazard flood-affected zone in the Koraiyar basin during this period is about 198.85 km2. It is noticed that the very low hazard zone occupies more area in the basin for the present and future simulations of flood hazard maps. The results show that the increase in peak runoff and runoff volume is marginally varied.


Assuntos
Monitoramento Ambiental , Inundações , Cidades , Hidrologia , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA