Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Anal Chem ; 94(19): 7123-7131, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35507917


The popular textbook and literature model I(λx,λm) = K(λx,λm)(1-10-Ax) or its variants for correlating the sample absorption and fluorescence often fails even for the simplest samples where the fluorophore is the only light absorber. Reported is a first-principle model I(λx,λm) = K(λx,λm)Ax,f10-(Ax,sdx+Am,sdm) for correlating the sample fluorescence measured with a conventional spectrofluorometer and its UV-vis absorbance quantified with a conventional UV-vis spectrophotometer. This model can be simplified or expanded for a variety of fluorescence analyses. First, it enables curve-fitting fluorescence intensity as a function of the fluorophore or sample absorbance over a sample concentration range impossible with existing models. Second, it provides the theoretical foundation for an inner-filter-effect (IFE)-correction method developed earlier and explains mathematically the linearity between the IFE-corrected fluorescence and the fluorophore concentration or absorbance. Third, this model can be expanded for quantitative mechanistic studies of fluorescence intensity variations triggered by stimuli treatments. One demonstrated example is to quantify temperature effects on the emission-wavelength-specific and total fluorescence quantum yield of anthracene. We expect that this first-principle model will be broadly adopted for both student education that promotes evidence-based learning and a variety of fluorescence applications where disentangling sample absorption and emission are critical for reliable data analysis.

Corantes Fluorescentes , Humanos , Espectrometria de Fluorescência/métodos
Environ Res ; 191: 110183, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919969


Remediation of steroidal estrogens from aqueous ecosystems is of prevailing concern due to their potential impact on organisms even at trace concentrations. Biochar (BC) is capable of estrogen removal due to its rich porosity and surface functionality. The presented review emphasizes on the adsorption mechanisms, isotherms, kinetics, ionic strength and the effect of matrix components associated with the removal of steroidal estrogens. The dominant sorption mechanisms reported for estrogen were π-π electron donor-acceptor interactions and hydrogen bonding. Natural organic matter and ionic species were seen to influence the hydrophobicity of the estrogen in multiple ways. Zinc activation and magnetization of the BC increased the surface area and surface functionalities leading to high adsorption capacities. The contribution by persistent free radicals and the arene network of BC have promoted the catalytic degradation of adsorbates via electron transfer mechanisms. The presence of surface functional groups and the redox activity of BC facilitates the bacterial degradation of estrogens. The sorptive removal of estrogens from aqueous systems has been minimally reviewed as a part of a collective evaluation of micropollutants. However, to the best of our knowledge, a critique focusing specifically and comprehensively on BC-based removal of steroidal estrogens does not exist. The presented review is a critical assessment of the existing literature on BC based steroidal estrogen adsorption and attempts to converge the scattered knowledge regarding its mechanistic interpretations. Sorption studies using natural water matrices containing residue level concentrations, and dynamic sorption experiments can be identified as future research directions.

Ecossistema , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Estrogênios , Água
RSC Adv ; 9(31): 17612-17622, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35520596


Tea-waste is an abundant feedstock for producing biochar (BC) which is considered to be a cost effective carbonaceous adsorbent useful for water remediation and soil amendment purposes. In the present study, tea-waste BC (TWBC) produced at three different temperatures were subjected to nitric, sulfuric and hydrochloric acid modifications (abbreviated as NM, SM and HM respectively). Characteristics of the raw and modified BC such as ultimate and proximate analyses, surface morphology, surface acidity and functionality, point of zero charge, cation exchange capacity (CEC) and thermal stability were compared to evaluate the influence of pyrolysis temperature and of modifications incorporated. The amount of carboxylic and phenolic surface functionalities on TWBC was seen to decrease by 93.44% and 81.06% respectively when the pyrolysis temperature was increased from 300 to 700 °C. Additionally, the yield of BC was seen to decrease by 46% upon the latter temperature increment. The elemental analysis results provided justification for high-temperature BC being more hydrophobic as was observed by the 61% increase in H/C ratio which is an indication of augmented aromatization. The CEC was the highest for the low-temperature BC and was seen to further increase by NM which is attributed to the 81.89% increase in carboxylic functionalities. The surface area was seen to significantly increase for BC700 upon NM (∼27 times). The SM led to pore wall destruction which was observed in scanning electron microscopy images. Findings would enable the rational use of these particular modifications in relevant remediation and soil amendment applications.