Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430092

RESUMO

Intense selection for milk yield has increased environmental sensitivity in animals, and currently, heat stress is an expensive problem in dairy farming. The objectives were to identify the best model for characterizing environmental sensitivity in Holstein cattle, using the test-day milk yield (TDMY) combined with the temperature-humidity index (THI), and identify sires genetically superior for heat-stress (HS) tolerance and milk yield, through random regression. The data comprised 94,549 TDMYs of 11,294 first-parity Holstein cows in Brazil, collected from 1997 to 2013. The yield data were fitted to Legendre orthogonal polynomials, linear splines and the Wilmink function. The THI (the average of two days before the dairy control) was used as an environmental gradient. An animal model that fitted production using a Legendre polynomials of quartic order for the days in milk and quadratic equations for the THI presented a better quality of fit (Akaike's information criterion (AIC) and Bayesian information criterion (BIC)). The Spearman correlation coefficient of greatest impact was 0.54, between the top 1% for TDMY and top 1% for HS. Only 9% of the sires showed plasticity and an aptitude for joint selection. Thus, despite the small population fraction allowed for joint selection, sufficient genetic variability for selecting more resilient sires was found, which promoted concomitant genetic gains in milk yield and thermotolerance.

2.
Anim Biosci ; 34(2): 163-171, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32777914

RESUMO

OBJECTIVE: Considering the importance of dairy farming and the negative effects of heat stress, more tolerant genotypes need to be identified. The objective of this study was to investigate the effect of heat stress via temperature-humidity index (THI) and diurnal temperature variation (DTV) in the genetic evaluations for daily milk yield of Holstein dairy cattle, using random regression models. METHODS: The data comprised 94,549 test-day records of 11,294 first parity Holstein cows from Brazil, collected from 1997 to 2013, and bioclimatic data (THI and DTV) from 18 weather stations. Least square linear regression models were used to determine the THI and DTV thresholds for milk yield losses caused by heat stress. In addition to the standard model (SM, without bioclimatic variables), THI and DTV were combined in various ways and tested for different days, totaling 41 models. RESULTS: The THI and DTV thresholds for milk yield losses was THI = 74 (-0.106 kg/d/THI) and DTV = 13 (-0.045 kg/d/DTV). The model that included THI and DTV as fixed effects, considering the two-day average, presented better fit (-2logL, Akaike information criterion, and Bayesian information criterion). The estimated breeding values (EBVs) and the reliabilities of the EBVs improved when using this model. CONCLUSION: Sires are re-ranking when heat stress indicators are included in the model. Genetic evaluation using the mean of two days of THI and DTV as fixed effect, improved EBVs and EBVs reliability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...