Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Intervalo de ano de publicação
Braz. j. oral sci ; 20: e210525, jan.-dez. 2021. ilus
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1253928


Aim: Recent reports indicate that deproteinization of acid-etched dentin surface can extend penetration depth of adhesive agents. The main goal of the present research was to investigate the deproteinization effect of Nd:YAG and diode 940 lasers on acid-etched dentin and microleakage grade in class V composite restorations. Methods: 36 extracted human premolar teeth were selected to make standard buccal and lingual class V cavities. These samples were randomly split into three sub-groups: 1.Control group, in which composite was applied for restoration after etch and bonding process without deproteinization; 2.Nd:YAG laser group, in which the teeth were deproteinized with Nd:YAG laser after etching and painting internal surfaces of cavities with Van Geison stain and then composite restorations applied just as control group; 3.Diode laser group, in which the process was similar to Nd:YAG laser group, but instead, diode 940 laser was irradiated. The teeth were bisected into two equal longitudinal buccal and lingual halves. Marginal microleakage of samples was scored by using a stereomicroscope. Kruskal- Wallis, Mann-Whitney U and Fisher's statistical tests were employed for analysis of the obtained data. Results: A significant reduction in marginal microleakage was observed for both groups treated with laser (Nd:YAG and diode 940)compared to control (p=0.001 & p=0.047). There was no significant difference in marginal microleakage between Nd:YAG laser and diode 940groups (P = 0.333). Conclusion: Nd:YAG and diode 940 laser deproteinization of acid-etched dentin decreased the marginal microleakage of in-vitro class V resin composite restorations

Humanos , Condicionamento Ácido do Dente , Adesivos Dentinários , Infiltração Dentária , Lasers
Int J Dent ; 2021: 5572569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040643


Aim: Several new bioactive compounds were recently introduced to the market with favorable ion release, tooth remineralization, and alkalizing potential. This study sought to compare the phosphate ion release and alkalizing potential of three bioactive materials in comparison with composite resin. Methods: Thirty-six discs (2 × 6 mm) were fabricated from Fuji II LC resin modified glass ionomer (RMGI), Activa BioActive, Cention N, and Z250 composite in plastic molds. The specimens were stored in distilled water for 24 and 48 h and 6 months. Half of the specimens were used to assess the phosphate ion release while the other half were used to assess the alkalizing potential 1 h after pH drop from 6.8 to 4. Phosphate ion release was quantified by a spectrophotometer while the pH value was measured by a pH meter. Data were analyzed using two-way ANOVA, one-way ANOVA, and Tukey's HSD test (for pairwise comparisons) at 0.05 level of significance. Results: At 24 h, the maximum phosphate ion release in distilled water occurred in the Fuji II LC group followed by Cention N, Activa BioActive, and Z250. At 6 months, Cention N followed by Activa BioActive showed higher phosphate ion release than Fuji II LC and Z250. No significant difference was noted between Activa BioActive and Cention N at any time point. All materials, except for Z250, increased the pH of the environment. Fuji II LC had maximum alkalizing effect at all time points followed by Cention N and Activa BioActive. Conclusion: Use of bioactive compounds is a promising method to ensure phosphate ion release, and can have a positive effect on tooth remineralization over time. Also, bioactive compounds can alkalize an acidic environment.

Eur J Dent ; 12(1): 105-110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29657533


Objective: In this study, we compared the effects of 0.12% chlorhexidine (CHX) and nano zinc oxide (NZO) on the microshear bond strength of dentin with a fifth-generation adhesive after acid etching. Materials and Methods: Forty molar teeth were randomly divided into four main groups based on dentin surface treatment technique (a) control (single bond 2); (b) NZO; (c) CHX; and (d) NZO + CHX. In each group, half of the samples underwent thermocycling, with no thermocycling in the other half. Then, failure mode was evaluated under a stereomicroscope. Statistical analysis was performed using t-test, two-way ANOVA, and Chi-squared test. Results: The mean microshear bond strength of the groups without thermocycling was more than that of the groups with thermocycling, but there were no statistically significant differences between the groups with and without thermocycling in pair-wise comparisons. Conclusion: Pretreatment with NZO and CHX separately and simultaneously had no effect on the microshear bond strength of a fifth-generation adhesive.