Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393580

RESUMO

The oncogene RAS is one of the most widely studied proteins in cancer biology, and mutant-active RAS is a driver in many types of solid tumors and hematological malignancies. Yet the biological effects of different RAS mutations and the tissue-specific clinical implications are complex and nuanced. Here, we identified an internal tandem duplication (ITD) in the switch II domain of NRAS from a patient with extremely aggressive colorectal carcinoma. Results of whole-exome DNA sequencing of primary and metastatic tumors indicated that this mutation was present in all analyzed metastases and excluded the presence of any other clear oncogenic driver mutations. Biochemical analysis revealed increased interaction of the RAS ITD with Raf proto-oncogene Ser/Thr kinase (RAF), leading to increased phosphorylation of downstream MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK). The ITD prevented interaction with neurofibromin 1 (NF1)-GTPase-activating protein (GAP), providing a mechanism for sustained activity of the RAS ITD protein. We present the first crystal structures of NRAS and KRAS ITD at 1.65-1.75 Å resolutions, respectively, providing insight into the physical interactions of this unique class of RAS variants with its regulatory and effector proteins. Our in-depth bedside-to-bench analysis uncovers the molecular mechanism underlying a case of highly aggressive colorectal cancer and illustrates the importance of robust biochemical and biophysical approaches in the implementation of individualized medicine.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32441882

RESUMO

The debris flood created by the 5 November 2015 failure of the Fundão Dam injected a large amount of fine sediment in the Gualaxo do Norte river system. Although coarse and sand sized sediment injections in rivers have been studied in relative detail, little is known about river response to overloading of mud (clay-silt) sized sediments. This paper presents an assessment of suspended sediment transport occurring in and along the Gualaxo do Norte River after the Fundão Dam failure to contribute to the general understanding of how rivers recover following large inputs of mud (clay-silt) sized sediment. The average total sediment removal estimated based on the last two rainy periods is 54,466 tonnes, ranging from 37,385 to 71,546 tonnes according to the uncertainty analysis. The sediment transport analysis suggests that the Gualaxo do Norte River is returning to its pre-event morphological character in terms of sediment transport. However, the morphologic recovery of the system has been constrained in recent years by decreased stream power, the result of moderate wet seasons and limited large flood events. We anticipate that future larger flood events will transport most of the remaining available in-channel tailings, speeding up the physical morphologic recovery of the Gualaxo do Norte River, which is a key component of improving water quality and eventually the river ecology. Although the proposed approach for the sediment budget is simplified and has limitations and uncertainties, it provides a scientific basis to explain the natural fluvial processes that have been occurring in the river system. The approach used for the sediment budget presented in this paper could be applied to similar cases with limited data. This article is protected by copyright. All rights reserved.

4.
Development ; 147(8)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345657

RESUMO

Skeletal muscle derives from dorsal mesoderm formed during vertebrate gastrulation. Fibroblast growth factor (Fgf) signalling cooperates with Tbx transcription factors to promote dorsal mesoderm formation, but their role in myogenesis has been unclear. Using zebrafish, we show that dorsally derived Fgf signals act through Tbx16 and Tbxta to induce slow and fast trunk muscle precursors at distinct dorsoventral positions. Tbx16 binds to and directly activates the myf5 and myod genes, which are required for commitment to myogenesis. Tbx16 activity depends on Fgf signalling from the organiser. In contrast, Tbxta is not required for myf5 expression, but binds a specific site upstream of myod that is not bound by Tbx16 and drives (dependent on Fgf signals) myod expression in adaxial slow precursors, thereby initiating trunk myogenesis. After gastrulation, when similar muscle cell populations in the post-anal tail are generated from tailbud, declining Fgf signalling is less effective at initiating adaxial myogenesis, which is instead initiated by Hedgehog signalling from the notochord. Our findings suggest a hypothesis for ancestral vertebrate trunk myogenic patterning and how it was co-opted during tail evolution to generate similar muscle by new mechanisms.This article has an associated 'The people behind the papers' interview.

5.
Sci Rep ; 10(1): 6156, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273533

RESUMO

Antigen (Ag)-specific tolerization prevents type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but proved less effective in humans. Several auto-Ags are fundamental to disease development, suggesting T1D etiology is heterogeneous and may limit the effectiveness of Ag-specific therapies to distinct disease endotypes. Colonization factor antigen I (CFA/I) fimbriae from Escherichia coli can inhibit autoimmune diseases in murine models by inducing bystander tolerance. To test if Ag-independent stimulation of regulatory T cells (Tregs) can prevent T1D onset, groups of NOD mice were orally treated with Lactococcus lactis (LL) expressing CFA/I. LL-CFA/I treatment beginning at 6 weeks of age reduced disease incidence by 50% (p < 0.05) and increased splenic Tregs producing both IL-10 and IFN-γ 8-fold (p < 0.005) compared to LL-vehicle treated controls. To further describe the role of these Tregs in preventing T1D, protective phenotypes were examined at different time-points. LL-CFA/I treatment suppressed splenic TNF-α+CD8+ T cells 6-fold at 11 weeks (p < 0.005) and promoted a distinct microbiome. At 17 weeks, IFN-γ+CD4+ T cells were suppressed 10-fold (p < 0.005), and at 30 weeks, pancreatic Tbet+CD4+ T cells were suppressed (p < 0.05). These results show oral delivery of modified commensal organisms, such as LL-CFA/I, may be harnessed to restrict Th1 cell-mediated immunity and protect against T1D.

6.
J Vis Exp ; (157)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281980

RESUMO

The literature describes several methods for mouse intubation that either require visualization of the glottis through the oral cavity or incision in the ventral neck for direct confirmation of cannula placement in the trachea. The relative difficulty or the tissue trauma induced to the subject by such procedures can be an impediment to an investigator's ability to perform longitudinal studies. This article illustrates a technique in which physical manipulation of the mouse following the use of a depilatory to remove hair from the ventral neck permits transcutaneous visualization of the trachea for orotracheal intubation regardless of degree of skin pigmentation. This method is innocuous to the subject and easily achieved with a limited understanding of murine anatomy. This refined approach facilitates repeated intubation, which may be necessary for monitoring progression of disease or instillation of treatments. Using this method may result in a reduction of the number of animals and technical skill required to measure lung function in mouse models of respiratory disease.

7.
Rev Sci Instrum ; 91(2): 025002, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113378

RESUMO

A high-throughput, automated screening platform has been developed for the assessment of biological membrane damage caused by nanomaterials. Membrane damage is detected using the technique of analyzing capacitance-current peak changes obtained through rapid cyclic voltammetry measurements of a phospholipid self-assembled monolayer formed on a mercury film deposited onto a microfabricated platinum electrode after the interaction of a biomembrane-active species. To significantly improve wider usability of the screening technique, a compact, high-throughput screening platform was designed, integrating the monolayer-supporting microfabricated electrode into a microfluidic flow cell, with bespoke pumps used for precise, automated control of fluid flow. Chlorpromazine, a tricyclic antidepressant, and a citrate-coated 50 nm diameter gold nanomaterial (AuNM) were screened to successfully demonstrate the platform's viability for high-throughput screening. Chlorpromazine and the AuNM showed interactions with a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) monolayer at concentrations in excess of 1 µmol dm-3. Biological validity of the electrochemically measured interaction of chlorpromazine with DOPC monolayers was confirmed through quantitative comparisons with HepG2 and A549 cytotoxicity assays. The platform also demonstrated desirable performance for high-throughput screening, with membrane interactions detected in <6 min per assay. Automation contributed to this significantly by reducing the required operating skill level when using the technique and minimizing fluid consumption.

8.
Cereb Cortex ; 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32147692

RESUMO

The rodent retrosplenial cortex (RSC) functions as an integrative hub for sensory and motor signals, serving roles in both navigation and memory. While RSC is reciprocally connected with the sensory cortex, the form in which sensory information is represented in the RSC and how it interacts with motor feedback is unclear and likely to be critical to computations involved in navigation such as path integration. Here, we used 2-photon cellular imaging of neural activity of putative excitatory (CaMKII expressing) and inhibitory (parvalbumin expressing) neurons to measure visual and locomotion evoked activity in RSC and compare it to primary visual cortex (V1). We observed stimulus position and orientation tuning, and a retinotopic organization. Locomotion modulation of activity of single neurons, both in darkness and light, was more pronounced in RSC than V1, and while locomotion modulation was strongest in RSC parvalbumin-positive neurons, visual-locomotion integration was found to be more supralinear in CaMKII neurons. Longitudinal measurements showed that response properties were stably maintained over many weeks. These data provide evidence for stable representations of visual cues in RSC that are spatially selective. These may provide sensory data to contribute to the formation of memories of spatial information.

9.
Methods Mol Biol ; 2121: 165-184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32147795

RESUMO

The highly parallel nature of sequencing by synthesis (SBS) allows millions of amplicons to be sequenced simultaneously, which has led to enormous interest in the investigation of bacterial communities (often referred to as the microbiota). In this protocol, we describe a method for the 'universal' amplification of the v4 region of the bacterial 16S rRNA gene from genomic DNA and prepare these amplicons so that they can be sequenced using the MiSeq system (Illumina). The protocol provides instruction on sequencing of 188 genomic DNA samples plus PCR positive and negative controls, which can be applied to any sample type where bacterial DNA may be of interest.

10.
Org Lett ; 22(6): 2365-2370, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32134277

RESUMO

Thiopeptides are a class of natural products with untapped therapeutic potential. To expand the methods available for the scaled production of these antibiotics, we report the laboratory synthesis of micrococcin P1 showcasing thiazole forming reactions of cysteine derivatives and nitriles followed by oxidation. In most instances, this thiazole forming sequence does not require chromatography and proved scalable. Using this approach, 199 mg of micrococcin P1 was generated in a single synthetic sequence.

11.
Birth Defects Res ; 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32187889

RESUMO

RAS proteins are commonly mutated in cancerous tumors, but germline RAS mutations are also found in RASopathy syndromes such as Noonan syndrome (NS) and cardiofaciocutaneous (CFC) syndrome. Activating RAS mutations can be subclassified based on their activating mechanisms. Understanding the structural basis for these mechanisms may provide clues for how to manage associated health conditions. We determined high-resolution X-ray structures of the RASopathy mutant KRASP34R seen in NS and CFCS. GTP and GDP-bound KRASP34R crystallized in multiple forms, with each lattice consisting of multiple protein conformations. In all GTP-bound conformations, the switch regions are not compatible with GAP binding, suggesting a structural mechanism for the GAP insensitivity of this RAS mutant. However, GTP-bound conformations are compatible with intrinsic nucleotide hydrolysis, including one that places R34 in a position analogous to the GAP arginine finger or intrinsic arginine finger found in heterotrimeric G proteins, which may support intrinsic GTP hydrolysis. We also note that the affinity between KRASP34R and RAF-RBD is decreased, suggesting another possible mechanism for dampening of RAS signaling. These results may provide a foothold for development of new mutation-specific strategies to address KRASP34R -driven diseases.

12.
Placenta ; 91: 43-51, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32174306

RESUMO

INTRODUCTION: It is widely debated whether fetal membranes possess a genuine microbiome, and if bacterial presence and load is linked to inflammation. Chorioamnionitis is an inflammation of the fetal membranes. This research focussed on inflammatory diagnosed histological chorioamnionitis (HCA) and aimed to determine whether the bacterial load in fetal membranes correlates to inflammatory response, including histological staging and inflammatory markers in HCA. METHODS: Fetal membrane samples were collected from patients with preterm spontaneous labour and histologically phenotyped chorioamnionitis (HCA; n = 12), or preterm (n = 6) and term labour without HCA (n = 6). The bacterial profile of fetal membranes was analysed by sequencing the V4 region of the 16S rRNA gene. Bacterial load was determined using qPCR copy number/mg of tissue. The association between bacterial load and bacterial profile composition was assessed using correlation analysis. RESULTS: Bacterial load was significantly greater within HCA amnion (p = 0.002) and chorion (p = 0.042), compared to preterm birth without HCA. Increased bacterial load was positively correlated with increased histological staging (p = 0.001) and the expression of five inflammatory markers; IL8, TLR1, TLR2, LY96 and IRAK2 (p=<0.050). Bacterial profiles were significantly different between membranes with and without HCA in amnion (p = 0.012) and chorion (p = 0.001), but no differences between specific genera were detected. DISCUSSION: Inflammatory HCA is associated with infection and increased bacterial load in a dose response relationship. Bacterial load is positively correlated with HCA severity and the TLR signalling pathway. Further research should investigate the bacterial load threshold required to generate an inflammatory response in HCA.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32179158

RESUMO

BACKGROUND: Bcl6 is required for the development of T follicular helper cells and T follicular regulatory (Tfr) cells that regulate germinal center responses. Bcl6 also affects the function of regulatory T (Treg) cells. OBJECTIVE: The goal of this study was to define the functions of Bcl6 in Treg cells, including Tfr cells, in the context of allergic airway inflammation. METHODS: We used a model of house dust mite sensitization to challenge wild-type, Bcl6fl/fl Foxp3-Cre, and Prdm1 (Blimp1)fl/fl Foxp3-Cre mice to study the reciprocal roles of Bcl6 and Blimp1 in allergic airway inflammation. RESULTS: In the house dust mite model, Tfr cells repress the production of IgE and Bcl6+ Treg cells suppress the generation of type 2 cytokine-producing cells in the lungs. In mice with Bcl6-deficient Treg cells, twice as many ST2+ (IL-33R+) Treg cells develop as are observed in wild-type mice. ST2+ Treg cells in the context of allergic airway inflammation are Blimp1 dependent, express type 2 cytokines, and share features of visceral adipose tissue Treg cells. Bcl6-deficient Treg cells are more susceptible, and Blimp1-deficient Treg cells are resistant, to acquiring the ST2+ Treg-cell phenotype in vitro and in vivo in response to IL-33. Bcl6-deficient ST2+ Treg cells, but not Bcl6-deficient ST2+ conventional T cells, strongly promote allergic airway inflammation when transferred into recipient mice. Lastly, ST2 is required for the exacerbated allergic airway inflammation in Bcl6fl/fl Foxp3-Cre mice. CONCLUSIONS: During allergic airway inflammation, Bcl6 and Blimp1 play dual roles in regulating Tfr-cell activity in the germinal center and in the development of ST2+ Treg cells that promote type 2 cytokine responses.

14.
Nature ; 579(7797): 123-129, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103176

RESUMO

A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease1-9. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units10), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches11-13 to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry14. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.


Assuntos
Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/química , Metabolômica , Microbiota/fisiologia , Animais , Ácidos e Sais Biliares/metabolismo , Ácido Cólico/biossíntese , Ácido Cólico/química , Ácido Cólico/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Vida Livre de Germes , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Camundongos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
16.
Oncogene ; 39(13): 2772-2785, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32020054

RESUMO

Young women diagnosed with breast cancer (BC) have poor prognosis due to increased rates of metastasis. In addition, women diagnosed within 10 years of most recent childbirth are approximately three times more likely to develop metastasis than age- and stage-matched nulliparous women. We define these cases as postpartum BC (PPBC) and propose that the unique biology of the postpartum mammary gland drives tumor progression. Our published results revealed roles for SEMA7A in breast tumor cell growth, motility, invasion, and tumor-associated lymphangiogenesis, all of which are also increased in preclinical models of PPBC. However, whether SEMA7A drives progression in PPBC remains largely unexplored. Our results presented herein show that silencing of SEMA7A decreases tumor growth in a model of PPBC, while overexpression is sufficient to increase growth in nulliparous hosts. Further, we show that SEMA7A promotes multiple known drivers of PPBC progression including tumor-associated COX-2 expression and fibroblast-mediated collagen deposition in the tumor microenvironment. In addition, we show for the first time that SEMA7A-expressing cells deposit fibronectin to promote tumor cell survival. Finally, we show that co-expression of SEMA7A/COX-2/FN predicts for poor prognosis in breast cancer patient cohorts. These studies suggest SEMA7A as a key mediator of BC progression, and that targeting SEMA7A may open avenues for novel therapeutic strategies.

17.
Nat Methods ; 17(3): 261-272, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015543

RESUMO

SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments.


Assuntos
Algoritmos , Biologia Computacional/métodos , Linguagens de Programação , Software , Biologia Computacional/história , Simulação por Computador , História do Século XX , História do Século XXI , Modelos Lineares , Modelos Biológicos , Dinâmica não Linear , Processamento de Sinais Assistido por Computador
18.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 12): 744-749, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31797816

RESUMO

The Rep domain of Wheat dwarf virus (WDV Rep) is an HUH endonuclease involved in rolling-circle replication. HUH endonucleases coordinate a metal ion to enable the nicking of a specific ssDNA sequence and the subsequent formation of an intermediate phosphotyrosine bond. This covalent protein-ssDNA adduct makes HUH endonucleases attractive fusion tags (HUH-tags) in a diverse number of biotechnological applications. Solving the structure of an HUH endonuclease in complex with ssDNA will provide critical information about ssDNA recognition and sequence specificity, thus enabling rationally engineered protein-DNA interactions that are programmable. The structure of the WDV Rep domain reported here was solved in the apo state from a crystal diffracting to 1.24 Šresolution and represents an initial step in the direction of solving the structure of a protein-ssDNA complex.

19.
Sci Rep ; 9(1): 17938, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784584

RESUMO

Three promising antibacterial peptides were studied with regard to their ability to inhibit the growth and kill the cells of clinical strains of Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. The multifunctional gramicidin S (GS) was the most potent, compared to the membranotropic temporin L (TL), being more effective than the innate-defence regulator IDR-1018 (IDR). These activities, compared across 16 strains as minimal bactericidal and minimal inhibitory concentrations (MIC), are independent of bacterial resistance pattern, phenotype variations and/or biofilm-forming potency. For S. aureus strains, complete killing is accomplished by all peptides at 5 × MIC. For E. faecalis strains, only GS exhibits a rapid bactericidal effect at 5 × MIC, while TL and IDR require higher concentrations. The biofilm-preventing activities of all peptides against the six strains with the largest biofilm biomass were compared. GS demonstrates the lowest minimal biofilm inhibiting concentrations, whereas TL and IDR are consistently less effective. In mature biofilms, only GS completely kills the cells of all studied strains. We compare the physicochemical properties, membranolytic activities, model pharmacokinetics and eukaryotic toxicities of the peptides and explain the bactericidal, antipersister and antibiofilm activities of GS by its elevated stability, pronounced cell-penetration ability and effective utilization of multiple modes of antibacterial action.

20.
BMC Plant Biol ; 19(1): 494, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722667

RESUMO

BACKGROUND: Guayule (Parthenium argentatum Gray) is a drought tolerant, rubber producing perennial shrub native to northern Mexico and the US Southwest. Hevea brasiliensis, currently the world's only source of natural rubber, is grown as a monoculture, leaving it vulnerable to both biotic and abiotic stressors. Isolation of rubber from guayule occurs by mechanical harvesting of the entire plant. It has been reported that environmental conditions leading up to harvest have a profound impact on rubber yield. The link between rubber biosynthesis and drought, a common environmental condition in guayule's native habitat, is currently unclear. RESULTS: We took a transcriptomic and comparative genomic approach to determine how drought impacts rubber biosynthesis in guayule. We compared transcriptional profiles of stem tissue, the location of guayule rubber biosynthesis, collected from field-grown plants subjected to water-deficit (drought) and well-watered (control) conditions. Plants subjected to the imposed drought conditions displayed an increase in production of transcripts associated with defense responses and water homeostasis, and a decrease in transcripts associated with rubber biosynthesis. An evolutionary and comparative analysis of stress-response transcripts suggests that more anciently duplicated transcripts shared among the Asteraceae, rather than recently derived duplicates, are contributing to the drought response observed in guayule. In addition, we identified several deeply conserved long non-coding RNAs (lncRNAs) containing microRNA binding motifs. One lncRNA in particular, with origins at the base of Asteraceae, may be regulating the vegetative to reproductive transition observed in water-stressed guayule by acting as a miRNA sponge for miR166. CONCLUSIONS: These data represent the first genomic analyses of how guayule responds to drought like conditions in agricultural production settings. We identified an inverse relationship between stress-responsive transcripts and those associated with precursor pathways to rubber biosynthesis suggesting a physiological trade-off between maintaining homeostasis and plant productivity. We also identify a number of regulators of abiotic responses, including transcription factors and lncRNAs, that are strong candidates for future projects aimed at modulating rubber biosynthesis under water-limiting conditions common to guayules' native production environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA