Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Mol Diagn ; 21(1): 38-48, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30577886

RESUMO

Clinical exome sequencing (CES) has a reported diagnostic yield of 20% to 30% for most clinical indications. The ongoing discovery of novel gene-disease and variant-disease associations are expected to increase the diagnostic yield of CES. Performing systematic reanalysis of previously nondiagnostic CES samples represents a significant challenge for clinical laboratories. Here, we present the results of a novel automated reanalysis methodology applied to 300 CES samples initially analyzed between June 2014 and September 2016. Application of our reanalysis methodology reduced reanalysis variant analysis burden by >93% and correctly captured 70 of 70 previously identified diagnostic variants among 60 samples with previously identified diagnoses. Notably, reanalysis of 240 initially nondiagnostic samples using information available on July 1, 2017, revealed 38 novel diagnoses, representing a 15.8% increase in diagnostic yield. Modeling monthly iterative reanalysis of 240 nondiagnostic samples revealed a diagnostic rate of 0.57% of samples per month. Modeling the workload required for monthly iterative reanalysis of nondiagnostic samples revealed a variant analysis burden of approximately 5 variants/month for proband-only and approximately 0.5 variants/month for trio samples. Approximately 45% of samples required evaluation during each monthly interval, and 61.3% of samples were reevaluated across three consecutive reanalyses. In sum, automated reanalysis methods can facilitate efficient reevaluation of nondiagnostic samples using up-to-date literature and can provide significant value to clinical laboratories.

4.
Am J Hum Genet ; 103(2): 305-316, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057029

RESUMO

Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.

5.
Am J Hum Genet ; 102(5): 995-1007, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656858

RESUMO

Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis.

7.
Genet Med ; 20(3): 329-336, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29389922

RESUMO

PurposeThe objective of this study was to assess the ability of our laboratory's exome-sequencing test to detect known and novel sequence variants and identify the critical factors influencing the interpretation of a clinical exome test.MethodsWe developed a two-tiered validation strategy: (i) a method-based approach that assessed the ability of our exome test to detect known variants using a reference HapMap sample, and (ii) an interpretation-based approach that assessed our relative ability to identify and interpret disease-causing variants, by analyzing and comparing the results of 19 randomly selected patients previously tested by external laboratories.ResultsWe demonstrate that this approach is reproducible with >99% analytical sensitivity and specificity for single-nucleotide variants and indels <10 bp. Our findings were concordant with the reference laboratories in 84% of cases. A new molecular diagnosis was applied to three cases, including discovery of two novel candidate genes.ConclusionWe provide an assessment of critical areas that influence interpretation of an exome test, including comprehensive phenotype capture, assessment of clinical overlap, availability of parental data, and the addressing of limitations in database updates. These results can be used to inform improvements in phenotype-driven interpretation of medical exomes in clinical and research settings.


Assuntos
Confiabilidade dos Dados , Exoma , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Biologia Computacional/métodos , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Testes Genéticos/normas , Genômica/métodos , Genômica/normas , Humanos , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Am J Hum Genet ; 102(1): 44-57, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276004

RESUMO

Although the role of typical Rho GTPases and other Rho-linked proteins in synaptic plasticity and cognitive function and dysfunction is widely acknowledged, the role of atypical Rho GTPases (such as RHOBTB2) in neurodevelopment has barely been characterized. We have now identified de novo missense variants clustering in the BTB-domain-encoding region of RHOBTB2 in ten individuals with a similar phenotype, including early-onset epilepsy, severe intellectual disability, postnatal microcephaly, and movement disorders. Three of the variants were recurrent. Upon transfection of HEK293 cells, we found that mutant RHOBTB2 was more abundant than the wild-type, most likely because of impaired degradation in the proteasome. Similarly, elevated amounts of the Drosophila ortholog RhoBTB in vivo were associated with seizure susceptibility and severe locomotor defects. Knockdown of RhoBTB in the Drosophila dendritic arborization neurons resulted in a decreased number of dendrites, thus suggesting a role of RhoBTB in dendritic development. We have established missense variants in the BTB-domain-encoding region of RHOBTB2 as causative for a developmental and epileptic encephalopathy and have elucidated the role of atypical Rho GTPase RhoBTB in Drosophila neurological function and possibly dendrite development.

9.
Am J Hum Genet ; 101(5): 768-788, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100089

RESUMO

Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Deficiência Intelectual/genética , Mutação/genética , Animais , Encéfalo/patologia , Linhagem Celular , Exoma/genética , Feminino , Ácido Glutâmico/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Fosforilação/genética , Transdução de Sinais/genética
10.
Am J Hum Genet ; 101(1): 139-148, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28686853

RESUMO

We report 15 individuals with de novo pathogenic variants in WDR26. Eleven of the individuals carry loss-of-function mutations, and four harbor missense substitutions. These 15 individuals comprise ten females and five males, and all have intellectual disability with delayed speech, a history of febrile and/or non-febrile seizures, and a wide-based, spastic, and/or stiff-legged gait. These subjects share a set of common facial features that include a prominent maxilla and upper lip that readily reveal the upper gingiva, widely spaced teeth, and a broad nasal tip. Together, these features comprise a recognizable facial phenotype. We compared these features with those of chromosome 1q41q42 microdeletion syndrome, which typically contains WDR26, and noted that clinical features are consistent between the two subsets, suggesting that haploinsufficiency of WDR26 contributes to the pathology of 1q41q42 microdeletion syndrome. Consistent with this, WDR26 loss-of-function single-nucleotide mutations identified in these subjects lead to nonsense-mediated decay with subsequent reduction of RNA expression and protein levels. We derived a structural model of WDR26 and note that missense variants identified in these individuals localize to highly conserved residues of this WD-40-repeat-containing protein. Given that WDR26 mutations have been identified in ∼1 in 2,000 of subjects in our clinical cohorts and that WDR26 might be poorly annotated in exome variant-interpretation pipelines, we would anticipate that this disorder could be more common than currently appreciated.


Assuntos
Facies , Marcha/genética , Haploinsuficiência/genética , Deficiência Intelectual/genética , Proteínas/genética , Convulsões/genética , Sequência de Aminoácidos , Sequência de Bases , Pré-Escolar , Deleção Cromossômica , Feminino , Crescimento e Desenvolvimento/genética , Humanos , Deficiência Intelectual/complicações , Masculino , Mutação/genética , Proteínas/química , Estabilidade de RNA/genética , Convulsões/complicações , Síndrome
11.
Neurol Genet ; 3(1): e130, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28180185

RESUMO

OBJECTIVE: ATAD1 encodes Thorase, a mediator of α-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptor recycling; in this work, we characterized the phenotype resulting from ATAD1 mutations and developed a targeted therapy in both mice and humans. METHODS: Using exome sequencing, we identified a novel ATAD1 mutation (p.E276X) as the etiology of a devastating neurologic disorder characterized by hypertonia, seizures, and death in a consanguineous family. We postulated that pathogenesis was a result of excessive AMPA receptor activity and designed a targeted therapeutic approach using perampanel, an AMPA-receptor antagonist. RESULTS: Perampanel therapy in ATAD1 knockout mice reversed behavioral defects, normalized brain MRI abnormalities, prevented seizures, and prolonged survival. The ATAD1 patients treated with perampanel showed improvement in hypertonicity and resolution of seizures. CONCLUSIONS: This work demonstrates that identification of novel monogenic neurologic disorders and observation of response to targeted therapeutics can provide important insights into human nervous system functioning.

12.
Orphanet J Rare Dis ; 11(1): 130, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27683084

RESUMO

We examined an extended, consanguineous family with seven individuals with severe intellectual disability and microcephaly. Further symptoms were hearing loss, vision impairment, gastrointestinal disturbances, and slow and asymmetric waves in the EEG. Linkage analysis followed by exome sequencing revealed a homozygous variant in SPATA5 (c.1822_1824del; p.Asp608del), which segregates with the phenotype in the family. Molecular modelling suggested a deleterious effect of the identified alterations on the protein function. In an unrelated family, we identified compound heterozygous variants in SPATA5 (c.[2081G > A];[989_991delCAA]; p.[Gly694Glu];[.Thr330del]) in a further individual with global developmental delay, infantile spasms, profound dystonia, and sensorineural hearing loss. Molecular modelling suggested an impairment of protein function in the presence of both variants.SPATA5 is a member of the ATPase associated with diverse activities (AAA) protein family and was very recently reported in one publication to be mutated in individuals with intellectual disability, epilepsy and hearing loss. Our results describe new, probably pathogenic variants in SPATA5 that were identified in individuals with a comparable phenotype. We thus independently confirm that bi-allelic pathogenic variants in SPATA5 cause a syndromic form of intellectual disability, and we delineate its clinical presentation.

13.
Am J Med Genet A ; 167A(11): 2548-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26111154

RESUMO

The SOX5 haploinsufficiency syndrome is characterized by global developmental delay, intellectual disability, language and motor impairment, and distinct facial features. The smallest deletion encompassed only one gene, SOX5 (OMIM 604975), indicating that haploinsufficiency of SOX5 contributes to neuro developmental delay. Although multiple deletions of the SOX5 gene have been reported in patients, none are strictly intragenic point mutations. Here, we report the identification of a de novo loss of function variant in SOX5 identified through whole exome sequencing. The proband presented with moderate developmental delay, bilateral optic atrophy, mildly dysmorphic features, and scoliosis, which correlates with the previously-described SOX5-associated phenotype. These results broaden the diagnostic spectrum of SOX5-related intellectual disability. Furthermore it highlights the utility of exome sequencing in establishing an etiological basis in clinically and genetically heterogeneous conditions such as intellectual disability.


Assuntos
Exoma/genética , Deficiência Intelectual/genética , Fatores de Transcrição SOXD/genética , Análise de Sequência de DNA , Adolescente , Adulto , Sequência de Bases , Códon sem Sentido/genética , Éxons/genética , Feminino , Humanos , Dados de Sequência Molecular
14.
Am J Hum Genet ; 96(3): 507-13, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25728777

RESUMO

Through a multi-center collaboration study, we here report six individuals from five unrelated families, with mutations in KAT6A/MOZ detected by whole-exome sequencing. All five different de novo heterozygous truncating mutations were located in the C-terminal transactivation domain of KAT6A: NM_001099412.1: c.3116_3117 delCT, p.(Ser1039∗); c.3830_3831insTT, p.(Arg1278Serfs∗17); c.3879 dupA, p.(Glu1294Argfs∗19); c.4108G>T p.(Glu1370∗) and c.4292 dupT, p.(Leu1431Phefs∗8). An additional subject with a 0.23 MB microdeletion including the entire KAT6A reading frame was identified with genome-wide array comparative genomic hybridization. Finally, by detailed clinical characterization we provide evidence that heterozygous mutations in KAT6A cause a distinct intellectual disability syndrome. The common phenotype includes hypotonia, intellectual disability, early feeding and oromotor difficulties, microcephaly and/or craniosynostosis, and cardiac defects in combination with subtle facial features such as bitemporal narrowing, broad nasal tip, thin upper lip, posteriorly rotated or low-set ears, and microretrognathia. The identification of human subjects complements previous work from mice and zebrafish where knockouts of Kat6a/kat6a lead to developmental defects.


Assuntos
Histona Acetiltransferases/genética , Deficiência Intelectual/genética , Adolescente , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Exoma , Feminino , Deleção de Genes , Loci Gênicos , Heterozigoto , Histona Acetiltransferases/metabolismo , Humanos , Lactente , Masculino , Microcefalia/genética , Mutação , Linhagem , Fenótipo
15.
PLoS One ; 9(5): e94224, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788142

RESUMO

BACKGROUND: Genetic, pharmacological, and environmental interventions that alter total levels of histone acetylation in specific brain regions can modulate behaviors and treatment responses. Efforts have been made to identify specific genes that are affected by alterations in total histone acetylation and to propose that such gene specific modulation could explain the effects of total histone acetylation levels on behavior - the implication being that under naturalistic conditions variability in histone acetylation occurs primarily around the promoters of specific genes. METHODS/RESULTS: Here we challenge this hypothesis by demonstrating with a novel flow cytometry based technique that normal variability in open field exploration, a hippocampus-related behavior, was associated with total levels of histone acetylation in the hippocampus but not in other brain regions. CONCLUSIONS: Results suggest that modulation of total levels of histone acetylation may play a role in regulating biological processes. We speculate in the discussion that endogenous regulation of total levels of histone acetylation may be a mechanism through which organisms regulate cellular plasticity. Flow cytometry provides a useful approach to measure total levels of histone acetylation at the single cell level. Relating such information to behavioral measures and treatment responses could inform drug delivery strategies to target histone deacetylase inhibitors and other chromatin modulators to places where they may be of benefit while avoiding areas where correction is not needed and could be harmful.


Assuntos
Comportamento Animal , Hipocampo/metabolismo , Histonas/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Comportamento Exploratório , Feminino , Hipocampo/fisiologia , Camundongos , Neostriado/metabolismo , Neostriado/fisiologia
16.
PLoS One ; 9(1): e85136, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465494

RESUMO

BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are the most common form of medication treatment for major depression. However, approximately 50% of depressed patients fail to achieve an effective treatment response. Understanding how gene expression systems respond to treatments may be critical for understanding antidepressant resistance. METHODS: We take a novel approach to this problem by demonstrating that the gene expression system of the dentate gyrus responds to fluoxetine (FLX), a commonly used antidepressant medication, in a stereotyped-manner involving changes in the expression levels of thousands of genes. The aggregate behavior of this large-scale systemic response was quantified with principal components analysis (PCA) yielding a single quantitative measure of the global gene expression system state. RESULTS: Quantitative measures of system state were highly correlated with variability in levels of antidepressant-sensitive behaviors in a mouse model of depression treated with fluoxetine. Analysis of dorsal and ventral dentate samples in the same mice indicated that system state co-varied across these regions despite their reported functional differences. Aggregate measures of gene expression system state were very robust and remained unchanged when different microarray data processing algorithms were used and even when completely different sets of gene expression levels were used for their calculation. CONCLUSIONS: System state measures provide a robust method to quantify and relate global gene expression system state variability to behavior and treatment. State variability also suggests that the diversity of reported changes in gene expression levels in response to treatments such as fluoxetine may represent different perspectives on unified but noisy global gene expression system state level responses. Studying regulation of gene expression systems at the state level may be useful in guiding new approaches to augmentation of traditional antidepressant treatments.


Assuntos
Antidepressivos/uso terapêutico , Comportamento Animal , Giro Denteado/metabolismo , Regulação da Expressão Gênica , Animais , Antidepressivos/farmacologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Depressão/tratamento farmacológico , Depressão/genética , Modelos Animais de Doenças , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
17.
PLoS One ; 7(8): e41215, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22936973

RESUMO

BACKGROUND: Emerging evidence suggests that fast-spiking (FS) interneurons are disrupted in multiple neuropsychiatric disorders including autism, schizophrenia, and bipolar disorder. FS cells, which are the primary source of synaptic inhibition, are critical for temporally organizing brain activity, regulating brain maturation, and modulating critical developmental periods in multiple cortical systems. Reduced expression of parvalbumin, a marker of mature FS cells, has been reported in individuals with schizophrenia and bipolar disorder and in mouse models of schizophrenia and autism. Although these results suggest that FS cells may be immature in neuropsychiatric disease, this possibility had not previously been formally assessed. METHODS: This study used time-course global expression data from developing FS cells to create a maturation index that tracked with the developmental age of purified cortical FS cells. The FS cell maturation index was then applied to global gene expression data from human cortex to estimate the maturity of the FS cell developmental program in the context of various disease states. Specificity of the index for FS cells was supported by a highly significant correlation of maturation index measurements with parvalbumin expression levels that withstood correction for multiple covariates. CONCLUSIONS: Results suggest the FS cell developmental gene expression program is immature in autism, schizophrenia, and bipolar disorder. More broadly, the current study indicates that cell-type specific maturation indices can be used to measure the maturity of developmental programs even in data from mixed cell types such as those found in brain homogenates.


Assuntos
Transtorno Autístico/genética , Transtorno Bipolar/genética , Esquizofrenia/genética , Humanos , Modelos Lineares , Neuropsiquiatria , Análise de Sequência com Séries de Oligonucleotídeos , Córtex Pré-Frontal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA