Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31398011

RESUMO

In this review, we focus on the metabolism of mammalian glycan-associated monosaccharides, where the vast majority of our current knowledge comes from research done during the 1960s and 1970s. Most monosaccharides enter the cell using distinct, often tissue specific transporters from the SLC2A family. If not catabolized, these monosaccharides can be activated to donor nucleotide sugars and used for glycan synthesis. Apart from exogenous and dietary sources, all monosaccharides and their associated nucleotide sugars can be synthesized de novo, using mostly glucose to produce all nine nucleotide sugars present in human cells. Today, monosaccharides are used as treatment options for a small number of rare genetic disorders and even some common conditions. Here, we cover therapeutic applications of these sugars and highlight biochemical gaps that must be revisited as we go forward.

2.
J Inherit Metab Dis ; 42(5): 993-997, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30945312

RESUMO

The translocon-associated protein (TRAP) complex facilitates the translocation of proteins across the endoplasmic reticulum membrane and associates with the oligosaccharyl transferase (OST) complex to maintain proper glycosylation of nascent polypeptides. Pathogenic variants in either complex cause a group of rare genetic disorders termed, congenital disorders of glycosylation (CDG). We report an individual who presented with severe intellectual and developmental disabilities and sensorineural deafness with an unsolved type I CDG, and sought to identify the underlying genetic basis. Exome sequencing identified a novel homozygous variant c.278_281delAGGA [p.Glu93Valfs*7] in the signal sequence receptor 3 (SSR3) subunit of the TRAP complex. Biochemical studies in patient fibroblasts showed the variant destabilized the TRAP complex with a complete loss of SSR3 protein and partial loss of SSR1 and SSR4. Importantly, all subunit levels were corrected by expression of wild-type SSR3. Abnormal glycosylation status in fibroblasts was confirmed using two markers proteins, GP130 and ICAM1. Our findings confirm mutations in SSR3 cause a novel CDG. A novel frameshift variant in the translocon associated protein, SSR3, disrupts the stability of the TRAP complex and causes a novel Congenital Disorder of Glycosylation.

3.
Hum Mutat ; 40(7): 908-925, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30817854

RESUMO

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.

4.
J Inherit Metab Dis ; 42(2): 325-332, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30701557

RESUMO

STT3A-CDG (OMIM# 615596) is an autosomal recessive N-linked glycosylation disorder characterized by seizures, developmental delay, intellectual disability, and a type I carbohydrate deficient transferrin pattern. All previously reported cases (n = 6) have been attributed to a homozygous pathogenic missense variant c.1877C>T (p.Val626Ala) in STT3A. We describe a patient with a novel homozygous likely pathogenic missense variant c.1079A>C (p.Tyr360Ser) who presents with chronically low Factor VIII (FVIII) and von Willebrand Factor (vWF) levels and activities in addition to the previously reported symptoms of developmental delay and seizures. VWF in our patient's plasma is present in a mildly hypoglycosylated form. FVIII antigen levels were too low to quantify in our patient. Functional studies with STT3A-/- HEK293 cells showed severely reduced FVIII antigen and activity levels in conditioned media <10% expected, but normal intracellular levels. We also show decreased glycosylation of STT3A-specific acceptors in fibroblasts from our patient, providing a mechanistic explanation for how STT3A deficiency leads to a severe defect in FVIII secretion. Our results suggest that certain STT3A-dependent N-glycans are required for efficient FVIII secretion, and the decreased FVIII level in our patient is a combined effect of both severely impaired FVIII secretion and lower plasma VWF level. Our report expands both the genotype and phenotype of STT3A-CDG; demonstrating, as in most types of CDG, that there are multiple disease-causing variants in STT3A.

5.
J Inherit Metab Dis ; 42(3): 553-564, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30746764

RESUMO

SLC35A2-CDG is caused by mutations in the X-linked SLC35A2 gene encoding the UDP-galactose transporter. SLC35A2 mutations lead to hypogalactosylation of N-glycans. SLC35A2-CDG is characterized by severe neurological symptoms and, in many patients, early-onset epileptic encephalopathy. In view of the diagnostic challenges, we studied the clinical, neuroradiological, and biochemical features of 15 patients (11 females and 4 males) with SLC35A2-CDG from various centers. We describe nine novel pathogenic variations in SLC35A2. All affected individuals presented with a global developmental delay, and hypotonia, while 70% were nonambulatory. Epilepsy was present in 80% of the patients, and in EEG hypsarrhythmia and findings consistent with epileptic encephalopathy were frequently seen. The most common brain MRI abnormality was cerebral atrophy with delayed myelination and multifocal inhomogeneous abnormal patchy white matter hyperintensities, which seemed to be nonprogressive. Thin corpus callosum was also common, and all the patients had a corpus callosum shorter than normal for their age. Variable dysmorphic features and growth deficiency were noted. Biochemically, normal mucin type O-glycosylation and lipid glycosylation were found, while transferrin mass spectrometry was found to be more specific in the identification of SLC35A2-CDG, as compared to routine screening tests. Although normal glycosylation studies together with clinical variability and genetic results complicate the diagnosis of SLC35A2-CDG, our data indicate that the combination of these three elements can support the pathogenicity of mutations in SLC35A2.

6.
Pediatr Neurol ; 94: 64-69, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770273

RESUMO

BACKGROUND: Arrest of fetal brain development and the fetal brain disruption sequence describe a severe phenotype involving microcephaly, occipital bone prominence, and scalp rugae. Congenital disorders of glycosylation are a heterogeneous group of inherited disorders involved in glycoprotein and glycolipid biosynthesis, which can cause microcephaly and severe neurodevelopmental disability. METHODS: We report an example of fetal microcephaly diagnosed at 36 weeks' gestation with a history of normal fetal biometry at 20 weeks' gestation. Postnatal genetic testing was performed. RESULTS: Fetal magnetic resonance imaging at 36 weeks' gestational age showed severe cortical thinning with a simplified gyral pattern for gestational age, ventriculomegaly, and agenesis of the corpus callosum. The fetal skull had a posterior shelf at the level of the lambdoid suture, characteristic of fetal brain disruption sequence. Postnatal brain magnetic resonance imaging found no brain growth during the interval from the fetal to postnatal study. The infant was found to have biallelic pathologic mutations in ALG11. CONCLUSIONS: Arrest of fetal brain development, with image findings consistent with fetal brain disruption sequence, is a previously unreported phenotype of congenital microcephaly in ALG11-congenital disorder of glycosylation. ALG11-congenital disorder of glycosylation should be considered in the differential diagnosis of this rare form of congenital microcephaly.

7.
Am J Med Genet A ; 179(3): 498-502, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30676690

RESUMO

ALG11-Congenital Disorder of Glycosylation (ALG11-CDG, also known as congenital disorder of glycosylation type Ip) is an inherited inborn error of metabolism due to abnormal protein and lipid glycosylation. We describe two unrelated patients with ALG11-CDG due to novel mutations, review the literature of previously described affected individuals, and further expand the clinical phenotype. Both affected individuals reported here had severe psychomotor disabilities and epilepsy. Their fibroblasts synthesized truncated precursor glycan structures, consistent with ALG11-CDG, while also showing hypoglycosylation of a novel biomarker, GP130. Surprisingly, one patient presented with normal transferrin glycosylation profile, a feature that has not been reported previously in patients with ALG11-CDG. Together, our data expand the clinical and mutational spectrum of ALG11-CDG.

8.
Am J Hum Genet ; 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30503518

RESUMO

FUK encodes fucokinase, the only enzyme capable of converting L-fucose to fucose-1-phosphate, which will ultimately be used for synthesizing GDP-fucose, the donor substrate for all fucosyltransferases. Although it is essential for fucose salvage, this pathway is thought to make only a minor contribution to the total amount of GDP-fucose. A second pathway, the major de novo pathway, involves conversion of GDP-mannose to GDP-fucose. Here we describe two unrelated individuals who have pathogenic variants in FUK and who presented with severe developmental delays, encephalopathy, intractable seizures, and hypotonia. The first individual was compound heterozygous for c.667T>C (p.Ser223Pro) and c.2047C>T (p.Arg683Cys), and the second individual was homozygous for c.2980A>C (p.Lys994Gln). Skin fibroblasts from the first individual confirmed the variants as loss of function and showed significant decreases in total GDP-[3H] fucose and [3H] fucose-1-phosphate. There was also a decrease in the incorporation of [5,6-3H]-fucose into fucosylated glycoproteins. Lys994 has previously been shown to be an important site for ubiquitin conjugation. Here, we show that loss-of-function variants in FUK cause a congenital glycosylation disorder characterized by a defective fucose-salvage pathway.

9.
Am J Hum Genet ; 103(4): 553-567, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290151

RESUMO

The conserved oligomeric Golgi (COG) complex is involved in intracellular vesicular transport, and is composed of eight subunits distributed in two lobes, lobe A (COG1-4) and lobe B (COG5-8). We describe fourteen individuals with Saul-Wilson syndrome, a rare form of primordial dwarfism with characteristic facial and radiographic features. All affected subjects harbored heterozygous de novo variants in COG4, giving rise to the same recurrent amino acid substitution (p.Gly516Arg). Affected individuals' fibroblasts, whose COG4 mRNA and protein were not decreased, exhibited delayed anterograde vesicular trafficking from the ER to the Golgi and accelerated retrograde vesicular recycling from the Golgi to the ER. This altered steady-state equilibrium led to a decrease in Golgi volume, as well as morphologic abnormalities with collapse of the Golgi stacks. Despite these abnormalities of the Golgi apparatus, protein glycosylation in sera and fibroblasts from affected subjects was not notably altered, but decorin, a proteoglycan secreted into the extracellular matrix, showed altered Golgi-dependent glycosylation. In summary, we define a specific heterozygous COG4 substitution as the molecular basis of Saul-Wilson syndrome, a rare skeletal dysplasia distinct from biallelic COG4-CDG.

10.
JIMD Rep ; 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30117111

RESUMO

Pathogenic mutations in DPAGT1 cause a rare type of a congenital disorder of glycosylation termed DPAGT1-CDG or, alternatively, a milder version with only myasthenia known as DPAGT1-CMS. Fourteen disease-causing mutations in 28 patients from 10 families have previously been reported to cause the systemic form, DPAGT1-CDG. We here report on another 11 patients from 8 families and add 10 new mutations. Most patients have a very severe disease course, where common findings are pronounced muscular hypotonia, intractable epilepsy, global developmental delay/intellectual disability, and early death. We also present data on three affected females that are young adults and have a somewhat milder, stable disease. Our findings expand both the molecular and clinical knowledge of previously published data but also widen the phenotypic spectrum of DPAGT1-CDG.

11.
Trends Genet ; 34(6): 466-476, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29606283

RESUMO

Congenital disorders of glycosylation (CDG) are a rapidly expanding group of metabolic disorders that result from abnormal protein or lipid glycosylation. They are often difficult to clinically diagnose because they broadly affect many organs and functions and lack clinical uniformity. However, recent technological advances in next-generation sequencing have revealed a treasure trove of new genetic disorders, expanded the knowledge of known disorders, and showed a critical role in infectious diseases. More comprehensive genetic tools specifically tailored for mammalian cell-based models have revealed a critical role for glycosylation in pathogen-host interactions, while also identifying new CDG susceptibility genes. We highlight recent advancements that have resulted in a better understanding of human glycosylation disorders, perspectives for potential future therapies, and mysteries for which we continue to seek new insights and solutions.

12.
Orphanet J Rare Dis ; 13(1): 4, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321044

RESUMO

BACKGROUND: TMEM199 deficiency was recently shown in four patients to cause liver disease with steatosis, elevated serum transaminases, cholesterol and alkaline phosphatase and abnormal protein glycosylation. There is no information on the long-term outcome in this disorder. RESULTS: We here present three novel patients with TMEM199-CDG. All three patients carried the same set of mutations (c.13-14delTT (p.Ser4Serfs*30) and c.92G > C (p.Arg31Pro), despite only two were related (siblings). One mutation (c.92G > C) was described previously whereas the other was deemed pathogenic due to its early frameshift. Western Blot analysis confirmed a reduced level of TMEM199 protein in patient fibroblasts and all patients showed a similar glycosylation defect. The patients presented with a very similar clinical and biochemical phenotype to the initial publication, confirming that TMEM199-CDG is a non-encephalopathic liver disorder. Two of the patients were clinically assessed over two decades without deterioration. CONCLUSION: A rising number of disorders affecting Golgi homeostasis have been published over the last few years. A hallmark finding is deficiency in protein glycosylation, both in N- and O-linked types. Most of these disorders have signs of both liver and brain involvement. However, the present and the four previously reported patients do not show encephalopathy but a chronic, non-progressive (over decades) liver disease with hypertransaminasemia and steatosis. This information is crucial for the patient/families and clinician at diagnosis, as it distinguishes it from other Golgi homeostasis disorders, in having a much more favorable course.

13.
Am J Hum Genet ; 102(1): 188-195, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29304374

RESUMO

Fucosyltransferase 8 (FUT8) encodes a Golgi-localized α1,6 fucosyltransferase that is essential for transferring the monosaccharide fucose into N-linked glycoproteins, a process known as "core fucosylation." Here we describe three unrelated individuals, who presented with intrauterine growth retardation, severe developmental and growth delays with shortened limbs, neurological impairments, and respiratory complications. Each underwent whole-exome sequencing and was found to carry pathogenic variants in FUT8. The first individual (consanguineous family) was homozygous for c.715C>T (p.Arg239∗), while the second (non-consanguineous family) was compound heterozygous for c.1009C>G (p.Arg337Gly) and a splice site variant c.1259+5G>T. The third individual (consanguineous family) was homozygous for a c.943C>T (p.Arg315∗). Splicing analysis confirmed the c.1259+5G>T resulted in expression of an abnormal FUT8 transcript lacking exon 9. Functional studies using primary fibroblasts from two affected individuals revealed a complete lack of FUT8 protein expression that ultimately resulted in substantial deficiencies in total core fucosylated N-glycans. Furthermore, serum samples from all three individuals showed a complete loss of core fucosylation. Here, we show that loss of function mutations in FUT8 cause a congenital disorder of glycosylation (FUT8-CDG) characterized by defective core fucosylation that phenotypically parallels some aspects of the Fut8-/- knockout mouse. Importantly, identification of additional affected individuals can be easily achieved through analysis of core fucosylation of N-glycans.

14.
Am J Med Genet A ; 173(11): 2906-2911, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28856833

RESUMO

Transport of activated nucleotide-sugars into the Golgi is critical for proper glycosylation and mutations in these transporters cause a group of rare genetic disorders termed congenital disorders of glycosylation. We performed exome sequencing on an individual with a profound neurological presentation and identified rare compound heterozygous mutations, p.Thr156Arg and p.Glu196Lys, in the CMP-sialic acid transporter, SLC35A1. Patient primary fibroblasts and serum showed a considerable decrease in the amount of N- and O-glycans terminating in sialic acid. Direct measurement of CMP-sialic acid transport into the Golgi showed a substantial decrease in overall rate of transport. Here we report the identification of the third patient with CMP-sialic acid transporter deficiency, who presented with severe neurological phenotype, but without hematological abnormalities.


Assuntos
Encefalopatias/genética , Complexo de Golgi/genética , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Animais , Encefalopatias/fisiopatologia , Células CHO , Criança , Cricetinae , Cricetulus , Feminino , Citometria de Fluxo , Humanos , Mutação , Ácido N-Acetilneuramínico/genética , Sequenciamento Completo do Exoma
15.
Mitochondrion ; 34: 84-90, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28216230

RESUMO

We report the clinical, biochemical, and molecular findings in two brothers with encephalopathy and multi-systemic disease. Abnormal transferrin glycoforms were suggestive of a type I congenital disorder of glycosylation (CDG). While exome sequencing was negative for CDG related candidate genes, the testing revealed compound heterozygous mutations in the mitochondrial elongation factor G gene (GFM1). One of the mutations had been reported previously while the second, novel variant was found deep in intron 6, activating a cryptic splice site. Functional studies demonstrated decreased GFM1 protein levels, suggested disrupted assembly of mitochondrial complexes III and V and decreased activities of mitochondrial complexes I and IV, all indicating combined OXPHOS deficiency.


Assuntos
Anormalidades Congênitas/genética , Anormalidades Congênitas/patologia , Expressão Gênica , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , Fator G para Elongação de Peptídeos/biossíntese , Fator G para Elongação de Peptídeos/genética , Sítios de Splice de RNA , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Masculino
16.
Nat Commun ; 8: 14516, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28218252

RESUMO

In eukaryotic cells, one-third of all proteins must be transported across or inserted into the endoplasmic reticulum (ER) membrane by the ER protein translocon. The translocon-associated protein (TRAP) complex is an integral component of the translocon, assisting the Sec61 protein-conducting channel by regulating signal sequence and transmembrane helix insertion in a substrate-dependent manner. Here we use cryo-electron tomography (CET) to study the structure of the native translocon in evolutionarily divergent organisms and disease-linked TRAP mutant fibroblasts from human patients. The structural differences detected by subtomogram analysis form a basis for dissecting the molecular organization of the TRAP complex. We assign positions to the four TRAP subunits within the complex, providing insights into their individual functions. The revealed molecular architecture of a central translocon component advances our understanding of membrane protein biogenesis and sheds light on the role of TRAP in human congenital disorders of glycosylation.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Glicoproteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Glicosilação , Células HeLa , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo
17.
Am J Med Genet A ; 170(12): 3165-3171, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27480077

RESUMO

Increasing numbers of congenital disorders of glycosylation (CDG) have been reported recently resulting in an expansion of the phenotypes associated with this group of disorders. SRD5A3 codes for polyprenol reductase which converts polyprenol to dolichol. This is a major pathway for dolichol biosynthesis for N-glycosylation, O-mannosylation, C-mannosylation, and GPI anchor synthesis. We present the features of five individuals (three children and two adults) with mutations in SRD5A3 focusing on the variable eye and skin involvement. We compare that to 13 affected individuals from the literature including five adults allowing us to delineate the features that may develop over time with this disorder including kyphosis, retinitis pigmentosa, and cataracts. © 2016 Wiley Periodicals, Inc.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Defeitos Congênitos da Glicosilação/genética , Olho/fisiopatologia , Proteínas de Membrana/genética , Pele/fisiopatologia , Adulto , Criança , Defeitos Congênitos da Glicosilação/fisiopatologia , Dolicol/metabolismo , Feminino , Glicosilação , Homozigoto , Humanos , Masculino , Mutação , Fenótipo , Tretinoína/análogos & derivados , Tretinoína/metabolismo
18.
Pediatr Int ; 58(8): 785-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27325525

RESUMO

Congenital nephrotic syndrome (NS) in the newborn is most frequently related to mutations in genes specific for structural integrity of the glomerular basement membrane and associated filtration structures within the kidney, resulting in massive leakage of plasma proteins into the urine. Occurrence of congenital NS in a multi-system syndrome is less common. We describe the case of an infant with deteriorating neurological status, seizures, edema, and proteinuria who was found to have a mutation in gene ALG1 and a renal biopsy consistent with congenital NS. Furthermore, we briefly review rare existing case reports documenting congenital NS in patients with mutations in ALG1, and treatment strategies, including novel use of peritoneal dialysis.


Assuntos
Anormalidades Múltiplas , Defeitos Congênitos da Glicosilação/genética , DNA/genética , Manosiltransferases/genética , Mutação , Síndrome Nefrótica/genética , Defeitos Congênitos da Glicosilação/metabolismo , Análise Mutacional de DNA , Glicosilação , Humanos , Recém-Nascido , Masculino , Manosiltransferases/metabolismo , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/terapia , Diálise Peritoneal
19.
Hum Mutat ; 37(7): 653-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26931382

RESUMO

Congenital disorders of glycosylation (CDG) arise from pathogenic mutations in over 100 genes leading to impaired protein or lipid glycosylation. ALG1 encodes a ß1,4 mannosyltransferase that catalyzes the addition of the first of nine mannose moieties to form a dolichol-lipid linked oligosaccharide intermediate required for proper N-linked glycosylation. ALG1 mutations cause a rare autosomal recessive disorder termed ALG1-CDG. To date 13 mutations in 18 patients from 14 families have been described with varying degrees of clinical severity. We identified and characterized 39 previously unreported cases of ALG1-CDG from 32 families and add 26 new mutations. Pathogenicity of each mutation was confirmed based on its inability to rescue impaired growth or hypoglycosylation of a standard biomarker in an alg1-deficient yeast strain. Using this approach we could not establish a rank order comparison of biomarker glycosylation and patient phenotype, but we identified mutations with a lethal outcome in the first two years of life. The recently identified protein-linked xeno-tetrasaccharide biomarker, NeuAc-Gal-GlcNAc2 , was seen in all 27 patients tested. Our study triples the number of known patients and expands the molecular and clinical correlates of this disorder.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Manosiltransferases/genética , Mutação , Polissacarídeos/metabolismo , Biomarcadores/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Genes Letais , Glicosilação , Humanos , Masculino , Análise de Sequência de DNA , Análise de Sobrevida
20.
Am J Hum Genet ; 98(2): 339-46, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26805780

RESUMO

Congenital disorders of glycosylation (CDGs) are disorders of abnormal protein glycosylation that affect multiple organ systems. Because most CDGs have been described in only a few individuals, our understanding of the associated phenotypes and the mechanisms of individual survival are limited. In the process of studying two siblings, aged 6 and 11 years, with MOGS-CDG and biallelic MOGS (mannosyl-oligosaccharide glucosidase) mutations (GenBank: NM_006302.2; c.[65C>A; 329G>A] p.[Ala22Glu; Arg110His]; c.[370C>T] p.[Gln124(∗)]), we noted that their survival was much longer than the previous report of MOGS-CDG, in a child who died at 74 days of age. Upon mutation analysis, we detected multiple MOGS genotypes including wild-type alleles in their cultured fibroblast and peripheral blood DNA. Further analysis of DNA from cultured fibroblasts of six individuals with compound heterozygous mutations of PMM2 (PMM2-CDG), MPI (MPI-CDG), ALG3 (ALG3-CDG), ALG12 (ALG12-CDG), DPAGT1 (DPAGT1-CDG), and ALG1 (ALG1-CDG) also identified multiple genotypes including wild-type alleles for each. Droplet digital PCR showed a ratio of nearly 1:1 wild-type to mutant alleles for most, but not all, mutations. This suggests that mitotic recombination contributes to the survival and the variable expressivity of individuals with compound heterozygous CDGs. This also provides an explanation for prior observations of a reduced frequency of homozygous mutations and might contribute to increased levels of residual enzyme activity in cultured fibroblasts of individuals with MPI- and PMM2-CDGs.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Mitose , Recombinação Genética , Sequência de Aminoácidos , Criança , Feminino , Fibroblastos/metabolismo , Frequência do Gene , Genoma Humano , Genótipo , Heterozigoto , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA , Irmãos , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA